429 resultados para Teoria del potencial (Física)
Resumo:
This work provides a general framework for the design of second-order blind estimators without adopting anyapproximation about the observation statistics or the a prioridistribution of the parameters. The proposed solution is obtainedminimizing the estimator variance subject to some constraints onthe estimator bias. The resulting optimal estimator is found todepend on the observation fourth-order moments that can be calculatedanalytically from the known signal model. Unfortunately,in most cases, the performance of this estimator is severely limitedby the residual bias inherent to nonlinear estimation problems.To overcome this limitation, the second-order minimum varianceunbiased estimator is deduced from the general solution by assumingaccurate prior information on the vector of parameters.This small-error approximation is adopted to design iterativeestimators or trackers. It is shown that the associated varianceconstitutes the lower bound for the variance of any unbiasedestimator based on the sample covariance matrix.The paper formulation is then applied to track the angle-of-arrival(AoA) of multiple digitally-modulated sources by means ofa uniform linear array. The optimal second-order tracker is comparedwith the classical maximum likelihood (ML) blind methodsthat are shown to be quadratic in the observed data as well. Simulationshave confirmed that the discrete nature of the transmittedsymbols can be exploited to improve considerably the discriminationof near sources in medium-to-high SNR scenarios.
Resumo:
This paper addresses the estimation of the code-phase(pseudorange) and the carrier-phase of the direct signal received from a direct-sequence spread-spectrum satellite transmitter. Thesignal is received by an antenna array in a scenario with interferenceand multipath propagation. These two effects are generallythe limiting error sources in most high-precision positioning applications.A new estimator of the code- and carrier-phases is derivedby using a simplified signal model and the maximum likelihood(ML) principle. The simplified model consists essentially ofgathering all signals, except for the direct one, in a component withunknown spatial correlation. The estimator exploits the knowledgeof the direction-of-arrival of the direct signal and is much simplerthan other estimators derived under more detailed signal models.Moreover, we present an iterative algorithm, that is adequate for apractical implementation and explores an interesting link betweenthe ML estimator and a hybrid beamformer. The mean squarederror and bias of the new estimator are computed for a numberof scenarios and compared with those of other methods. The presentedestimator and the hybrid beamforming outperform the existingtechniques of comparable complexity and attains, in manysituations, the Cramér–Rao lower bound of the problem at hand.
Resumo:
This correspondence addresses the problem of nondata-aidedwaveform estimation for digital communications. Based on the unconditionalmaximum likelihood criterion, the main contribution of this correspondenceis the derivation of a closed-form solution to the waveform estimationproblem in the low signal-to-noise ratio regime. The proposed estimationmethod is based on the second-order statistics of the received signaland a clear link is established between maximum likelihood estimation andcorrelation matching techniques. Compression with the signal-subspace isalso proposed to improve the robustness against the noise and to mitigatethe impact of abnormals or outliers.
Resumo:
In numerical linear algebra, students encounter earlythe iterative power method, which finds eigenvectors of a matrixfrom an arbitrary starting point through repeated normalizationand multiplications by the matrix itself. In practice, more sophisticatedmethods are used nowadays, threatening to make the powermethod a historical and pedagogic footnote. However, in the contextof communication over a time-division duplex (TDD) multipleinputmultiple-output (MIMO) channel, the power method takes aspecial position. It can be viewed as an intrinsic part of the uplinkand downlink communication switching, enabling estimationof the eigenmodes of the channel without extra overhead. Generalizingthe method to vector subspaces, communication in thesubspaces with the best receive and transmit signal-to-noise ratio(SNR) is made possible. In exploring this intrinsic subspace convergence(ISC), we show that several published and new schemes canbe cast into a common framework where all members benefit fromthe ISC.
Resumo:
In this letter, we obtain the Maximum LikelihoodEstimator of position in the framework of Global NavigationSatellite Systems. This theoretical result is the basis of a completelydifferent approach to the positioning problem, in contrastto the conventional two-steps position estimation, consistingof estimating the synchronization parameters of the in-viewsatellites and then performing a position estimation with thatinformation. To the authors’ knowledge, this is a novel approachwhich copes with signal fading and it mitigates multipath andjamming interferences. Besides, the concept of Position–basedSynchronization is introduced, which states that synchronizationparameters can be recovered from a user position estimation. Weprovide computer simulation results showing the robustness ofthe proposed approach in fading multipath channels. The RootMean Square Error performance of the proposed algorithm iscompared to those achieved with state-of-the-art synchronizationtechniques. A Sequential Monte–Carlo based method is used todeal with the multivariate optimization problem resulting fromthe ML solution in an iterative way.
Resumo:
A unified and general vision of different space-time processors is presented. Many popular receivers can beaccomodated, like V-RAKE receivers, weighted V-RAKE, or spatial narrowband beamforming. By makingappropriate assumptions on the space/time characteristic of the interference it is possible to enhance theperformance of the receiver through spatial/temporal pre-processors. These receivers will be tested in the FDDmode of UTRA.
Resumo:
This paper deals with the design of nonregenerativerelaying transceivers in cooperative systems where channel stateinformation (CSI) is available at the relay station. The conventionalnonregenerative approach is the amplify and forward(A&F) approach, where the signal received at the relay is simplyamplified and retransmitted. In this paper, we propose an alternativelinear transceiver design for nonregenerative relaying(including pure relaying and the cooperative transmission cases),making proper use of CSI at the relay station. Specifically, wedesign the optimum linear filtering performed on the data to beforwarded at the relay. As optimization criteria, we have consideredthe maximization of mutual information (that provides aninformation rate for which reliable communication is possible) fora given available transmission power at the relay station. Threedifferent levels of CSI can be considered at the relay station: onlyfirst hop channel information (between the source and relay);first hop channel and second hop channel (between relay anddestination) information, or a third situation where the relaymay have complete cooperative channel information includingall the links: first and second hop channels and also the directchannel between source and destination. Despite the latter beinga more unrealistic situation, since it requires the destination toinform the relay station about the direct channel, it is useful as anupper benchmark. In this paper, we consider the last two casesrelating to CSI.We compare the performance so obtained with theperformance for the conventional A&F approach, and also withthe performance of regenerative relays and direct noncooperativetransmission for two particular cases: narrowband multiple-inputmultiple-output transceivers and wideband single input singleoutput orthogonal frequency division multiplex transmissions.
Resumo:
Cooperative transmission can be seen as a "virtual" MIMO system, where themultiple transmit antennas are in fact implemented distributed by the antennas both at the source and the relay terminal. Depending on the system design, diversity/multiplexing gainsare achievable. This design involves the definition of the type of retransmission (incrementalredundancy, repetition coding), the design of the distributed space-time codes, the errorcorrecting scheme, the operation of the relay (decode&forward or amplify&forward) and thenumber of antennas at each terminal. Proposed schemes are evaluated in different conditionsin combination with forward error correcting codes (FEC), both for linear and near-optimum(sphere decoder) receivers, for its possible implementation in downlink high speed packetservices of cellular networks. Results show the benefits of coded cooperation over directtransmission in terms of increased throughput. It is shown that multiplexing gains areobserved even if the mobile station features a single antenna, provided that cell wide reuse of the relay radio resource is possible.
Resumo:
A detailed mathematical analysis on the q = 1/2 non-extensive maximum entropydistribution of Tsallis' is undertaken. The analysis is based upon the splitting of such adistribution into two orthogonal components. One of the components corresponds to theminimum norm solution of the problem posed by the fulfillment of the a priori conditionson the given expectation values. The remaining component takes care of the normalizationconstraint and is the projection of a constant onto the Null space of the "expectation-values-transformation"
Resumo:
A regularization method based on the non-extensive maximum entropy principle is devised. Special emphasis is given to the q=1/2 case. We show that, when the residual principle is considered as constraint, the q=1/2 generalized distribution of Tsallis yields a regularized solution for bad-conditioned problems. The so devised regularized distribution is endowed with a component which corresponds to the well known regularized solution of Tikhonov (1977).
Resumo:
A maximum entropy statistical treatment of an inverse problem concerning frame theory is presented. The problem arises from the fact that a frame is an overcomplete set of vectors that defines a mapping with no unique inverse. Although any vector in the concomitant space can be expressed as a linear combination of frame elements, the coefficients of the expansion are not unique. Frame theory guarantees the existence of a set of coefficients which is “optimal” in a minimum norm sense. We show here that these coefficients are also “optimal” from a maximum entropy viewpoint.
Resumo:
Es modelitza un vehicle submarí i s'estudien diferents alternatives de control sota linearització sota l'assumpció d'una geometria d'elipsoide prolat, obtenint les gràfiques de l'estat i el control en un interval de temps.