Frames: a maximum entropy statistical estimate of the inverse problem


Autoria(s): Rebollo Neira, Laura; Fernández Rubio, Juan Antonio; Plastino, Angel Luís
Contribuinte(s)

Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions

Universitat Politècnica de Catalunya. SPCOM - Grup de Recerca de Processament del Senyal i Comunicacions

Data(s)

10/05/2012

Resumo

A maximum entropy statistical treatment of an inverse problem concerning frame theory is presented. The problem arises from the fact that a frame is an overcomplete set of vectors that defines a mapping with no unique inverse. Although any vector in the concomitant space can be expressed as a linear combination of frame elements, the coefficients of the expansion are not unique. Frame theory guarantees the existence of a set of coefficients which is “optimal” in a minimum norm sense. We show here that these coefficients are also “optimal” from a maximum entropy viewpoint.

Identificador

http://hdl.handle.net/2117/1608

Idioma(s)

eng

Direitos

Consulteu les condicions d'ús d'aquest document en el repositori original:<a href="http://hdl.handle.net/2117/1608">http://hdl.handle.net/2117/1608</a>

Palavras-Chave #Àrees temàtiques de la UPC::Enginyeria electrònica i telecomunicacions::Processament del senyal #Probability and statistics #Stochastic processes #Entropy #Expansion coefficients #Inverse problems #Frame theory #Mapping #Maximum entropy statistical estimate #Minimum norm #Statistical analysis #Stochastic processes #Vectors #Processos estocàstics -- Models matemàtics #Problemes inversos (Equacions diferencials) #Vectors