21 resultados para logic circuits
Resumo:
Correspondència referida a l'article de R. Giannetti, publicat ibid. vol.49 p.87-88
Resumo:
This paper presents a probabilistic approach to model the problem of power supply voltage fluctuations. Error probability calculations are shown for some 90-nm technology digital circuits.The analysis here considered gives the timing violation error probability as a new design quality factor in front of conventional techniques that assume the full perfection of the circuit. The evaluation of the error bound can be useful for new design paradigms where retry and self-recoveringtechniques are being applied to the design of high performance processors. The method here described allows to evaluate the performance of these techniques by means of calculating the expected error probability in terms of power supply distribution quality.
Resumo:
PLFC is a first-order possibilistic logic dealing with fuzzy constants and fuzzily restricted quantifiers. The refutation proof method in PLFC is mainly based on a generalized resolution rule which allows an implicit graded unification among fuzzy constants. However, unification for precise object constants is classical. In order to use PLFC for similarity-based reasoning, in this paper we extend a Horn-rule sublogic of PLFC with similarity-based unification of object constants. The Horn-rule sublogic of PLFC we consider deals only with disjunctive fuzzy constants and it is equipped with a simple and efficient version of PLFC proof method. At the semantic level, it is extended by equipping each sort with a fuzzy similarity relation, and at the syntactic level, by fuzzily “enlarging” each non-fuzzy object constant in the antecedent of a Horn-rule by means of a fuzzy similarity relation.
Resumo:
Possibilistic Defeasible Logic Programming (P-DeLP) is a logic programming language which combines features from argumentation theory and logic programming, incorporating the treatment of possibilistic uncertainty at the object-language level. In spite of its expressive power, an important limitation in P-DeLP is that imprecise, fuzzy information cannot be expressed in the object language. One interesting alternative for solving this limitation is the use of PGL+, a possibilistic logic over Gödel logic extended with fuzzy constants. Fuzzy constants in PGL+ allow expressing disjunctive information about the unknown value of a variable, in the sense of a magnitude, modelled as a (unary) predicate. The aim of this article is twofold: firstly, we formalize DePGL+, a possibilistic defeasible logic programming language that extends P-DeLP through the use of PGL+ in order to incorporate fuzzy constants and a fuzzy unification mechanism for them. Secondly, we propose a way to handle conflicting arguments in the context of the extended framework.
Resumo:
In the last decade defeasible argumentation frameworks have evolved to become a sound setting to formalize commonsense, qualitative reasoning. The logic programming paradigm has shown to be particularly useful for developing different argument-based frameworks on the basis of different variants of logic programming which incorporate defeasible rules. Most of such frameworks, however, are unable to deal with explicit uncertainty, nor with vague knowledge, as defeasibility is directly encoded in the object language. This paper presents Possibilistic Logic Programming (P-DeLP), a new logic programming language which combines features from argumentation theory and logic programming, incorporating as well the treatment of possibilistic uncertainty. Such features are formalized on the basis of PGL, a possibilistic logic based on G¨odel fuzzy logic. One of the applications of P-DeLP is providing an intelligent agent with non-monotonic, argumentative inference capabilities. In this paper we also provide a better understanding of such capabilities by defining two non-monotonic operators which model the expansion of a given program P by adding new weighed facts associated with argument conclusions and warranted literals, respectively. Different logical properties for the proposed operators are studied
Resumo:
In the context of autonomous sensors powered by small-size photovoltaic (PV) panels, this work analyses how the efficiency of DC/DC-converter-based power processing circuits can be improved by an appropriate selection of the inductor current that transfers the energy from the PV panel to a storage unit. Each component of power losses (fixed, conduction and switching losses) involved in the DC/DC converter specifically depends on the average inductor current so that there is an optimal value of this current that causes minimal losses and, hence, maximum efficiency. Such an idea has been tested experimentally using two commercial DC/DC converters whose average inductor current is adjustable. Experimental results show that the efficiency can be improved up to 12% by selecting an optimal value of that current, which is around 300-350 mA for such DC/DC converters.