66 resultados para Transducer Excitation
Resumo:
Classical and quantum theory of spin waves in the vortex state of a mesoscopic submicron magnetic disk have been developed with account of the finite mass density of the vortex. Oscillations of the vortex core resemble oscillations of a charged string in a potential well in the presence of the magnetic field. A conventional gyrotropic frequency appears as a gap in the spectrum of spin waves of the vortex. The mass of the vortex has been computed, and the result agrees with experimental findings. The finite vortex mass generates a high-frequency branch of spin waves. The effects of an external magnetic field and dissipation have been addressed.
Resumo:
Previous results concerning radiative emission under laser irradiation of silicon nanopowder are reinterpreted in terms of thermal emission. A model is developed that considers the particles in the powder as independent, so under vacuum the only dissipation mechanism is thermal radiation. The supralinear dependence observed between the intensity of the emitted radiation and laser power is predicted by the model, as is the exponential quenching when the gas pressure around the sample increases. The analysis allows us to determine the sample temperature. The local heating of the sample has been assessed independently by the position of the transverse optical Raman mode. Finally, it is suggested that the photoluminescence observed in porous silicon and similar materials could, in some cases, be blackbody radiation
Resumo:
Report for the scientific sojourn at the Department of Micro and Nanotechnology of the Technical University of Denmark from August until December 2006. The research was focused on designing and carrying out a technological process for fabricating high frequency resonators with dielectric solid transducer gaps.
Resumo:
Sixty-nine entire male pigs with different halothane genotype (homozygous halothane positive – nn –, n=36; and homozygous halothane negative – NN-, n=33) were fed with a supplementation of magnesium sulphate (Mg) and/or L-tryptophan (Trp) in the diet for 5 days before slaughter. Animals were housed individually and were submitted to stressful ante mortem conditions (mixed in the lorry according to treatments and transported 1 hour on rough roads). Individual feed intake was recorded during the 5-d treatment. At the abattoir, pig behaviour was assessed in the raceway to the stunning system and during the stunning period by exposure to CO2. Muscle pH, colour, water holding capacity, texture and cathepsin activities were determined to assess meat quality. The number of pigs with an individual feed intake lower than 2 kg/d was significantly different among diets (P&0.05; Control: 8.7 %; Mg&Trp: 43.5 %; Trp: 17.4 %) and they were considered to have inadequate supplement intake. During the ante mortem period, 15.2 % of pigs included in the experiment died, and this percentage decreased to 8.7 % in those pigs with a feed intake & 2kg/day, all of them from the stress-sensitive pigs (nn). In general, no differences were observed in the behaviour of pigs along the corridor leading to the stunning system and inside the CO2 stunning system. During the stunning procedure, Trp diet showed shorter periods of muscular excitation than control and Mg&Trp diets. The combination of a stressful ante mortem treatment and Mg&Trp supplementation led to carcasses with high incidence of severe skin lesions. Different meat quality results were found when considering all pigs or considering only those with adequate supplement intake. In this later case, Trp increased pH45 (6.15) vs Control diet (5.96) in the Longissimus thoracis (LT) muscle (P&0.05) and pH at 24h (Trp: 5.59 vs C: 5.47) led to a higher incidence of dark, firm and exudative (DFD) traits in SM muscle (P&0.05). Genotype affected negatively all the meat quality traits. Seventy-five percent of LT and 60.0 % of the SM muscles from nn pigs were classified as pale, soft and exudative (PSE), while none of the NN pigs showed these traits (P&0.0001). No significant differences were found between genotypes on the incidence of DFD meat. Due to the negative effects observed in the Mg&Trp group in feed intake and carcass quality, the utilization of a mixture of magnesium sulphate and tryptophan is not recommended.
Resumo:
A decentralized model reference controller is designed to reduce the magnitude of the transversal vibration of a flexible cable-stayed beam structure induced by a seismic excitation. The controller design is made based on the principle of sliding mode such that a priori knowledge
Resumo:
Previously reported results on deep level optical spectroscopy, optical absorption, deep level transient spectroscopy, photoluminescence excitation, and time resolved photoluminescence are reviewed and discussed in order to know which are the mechanisms involved in electron capture and emission of the Ti acceptor level in GaP. First, the analysis indicates that the 3T1(F) crystal¿field excited state is not in resonance with the conduction band states. Second, it is shown that both the 3T2 and 3T1(F) excited states do not play any significant role in the process of electron emission and capture.
Resumo:
We demonstrate that thickness, optical constants, and details of the multilayer stack, together with the detection setting, strongly influence the photoluminescence spectra of Si nanocrystals embedded in SiO2. Due to multiple reflections of the visible light against the opaque silicon substrate, an interference pattern is built inside the oxide layer, which is responsible for the modifications in the measured spectra. This interference effect is complicated by the depth dependence of (i) the intensity of the excitation laser and (ii) the concentration of the emitting nanocrystals. These variations can give rise to apparent features in the recorded spectra, such as peak shifts, satellite shoulders, and even splittings, which can be mistaken as intrinsic material features. Thus, they can give rise to an erroneous attribution of optical bands or estimate of the average particle size, while they are only optical-geometrical artifacts. We have analyzed these effects as a function of material composition (Si excess fraction) and thickness, and also evaluated how the geometry of the detection setup affects the measurements. To correct the experimental photoluminescence spectra and extract the true spectral shape of the emission from Si nanocrystals, we have developed an algorithm based on a modulation function, which depends on both the multilayer sequence and the experimental configuration. This procedure can be easily extended to other heterogeneous systems.
Resumo:
We present an extensive study of the structural and optical emission properties in aluminum silicates and soda-lime silicates codoped with Si nanoclusters (Si-nc) and Er. Si excess of 5 and 15¿at.¿% and Er concentrations ranging from 2×1019 up to 6×1020¿cm¿3 were introduced by ion implantation. Thermal treatments at different temperatures were carried out before and after Er implantation. Structural characterization of the resulting structures was performed to obtain the layer composition and the size distribution of Si clusters. A comprehensive study has been carried out of the light emission as a function of the matrix characteristics, Si and Er contents, excitation wavelength, and power. Er emission at 1540¿nm has been detected in all coimplanted glasses, with similar intensities. We estimated lifetimes ranging from 2.5¿to¿12¿ms (depending on the Er dose and Si excess) and an effective excitation cross section of about 1×10¿17¿cm2 at low fluxes that decreases at high pump power. By quantifying the amount of Er ions excited through Si-nc we find a fraction of 10% of the total Er concentration. Upconversion coefficients of about 3×10¿18¿cm¿3¿s¿1 have been found for soda-lime glasses and one order of magnitude lower in aluminum silicates.
Resumo:
Linear and nonlinear optical properties of silicon suboxide SiOx films deposited by plasma-enhanced chemical-vapor deposition have been studied for different Si excesses up to 24¿at.¿%. The layers have been fully characterized with respect to their atomic composition and the structure of the Si precipitates. Linear refractive index and extinction coefficient have been determined in the whole visible range, enabling to estimate the optical bandgap as a function of the Si nanocrystal size. Nonlinear optical properties have been evaluated by the z-scan technique for two different excitations: at 0.80¿eV in the nanosecond regime and at 1.50¿eV in the femtosecond regime. Under nanosecond excitation conditions, the nonlinear process is ruled by thermal effects, showing large values of both nonlinear refractive index (n2 ~ ¿10¿8¿cm2/W) and nonlinear absorption coefficient (ß ~ 10¿6¿cm/W). Under femtosecond excitation conditions, a smaller nonlinear refractive index is found (n2 ~ 10¿12¿cm2/W), typical of nonlinearities arising from electronic response. The contribution per nanocrystal to the electronic third-order nonlinear susceptibility increases as the size of the Si nanoparticles is reduced, due to the appearance of electronic transitions between discrete levels induced by quantum confinement.
Resumo:
The potential for application of silicon nitride-based light sources to general lighting is reported. The mechanism of current injection and transport in silicon nitride layers and silicon oxide tunnel layers is determined by electro-optical characterization of both bi- and tri-layers. It is shown that red luminescence is due to bipolar injection by direct tunneling, whereas Poole-Frenkel ionization is responsible for blue-green emission. The emission appears warm white to the eye, and the technology has potential for large-area lighting devices. A photometric study, including color rendering, color quality and luminous efficacy of radiation, measured under various AC excitation conditions, is given for a spectrum deemed promising for lighting. A correlated color temperature of 4800K was obtained using a 35% duty cycle of the AC excitation signal. Under these conditions, values for general color rendering index of 93 and luminous efficacy of radiation of 112 lm/W are demonstrated. This proof of concept demonstrates that mature silicon technology, which is extendable to lowcost, large-area lamps, can be used for general lighting purposes. Once the external quantum efficiency is improved to exceed 10%, this technique could be competitive with other energy-efficient solid-state lighting options. ©2011 Optical Society of America OCIS codes: (230.2090) Electro-optical devices; (150.2950) Illumination.
Resumo:
An analysis of silicon on insulator structures obtained by single and multiple implants by means of Raman scattering and photoluminescence spectroscopy is reported. The Raman spectra obtained with different excitation powers and wavelengths indicate the presence of a tensile strain in the top silicon layer of the structures. The comparison between the spectra measured in both kinds of samples points out the existence in the multiple implant material of a lower strain for a penetration depth about 300 nm and a higher strain for higher penetration depths. These results have been correlated with transmission electron microscopy observations, which have allowed to associate the higher strain to the presence of SiO2 precipitates in the top silicon layer, close to the buried oxide. The found lower strain is in agreement with the better quality expected for this material, which is corroborated by the photoluminescence data.
Resumo:
We present a electroluminescence (EL) study of the Si-rich silicon oxide (SRSO) LEDs with and without Er3+ ions under different polarization schemes: direct current (DC) and pulsed voltage (PV). The power efficiency of the devices and their main optical limitations are presented. We show that under PV polarization scheme, the devices achieve one order of magnitude superior performance in comparison with DC. Time-resolved measurements have shown that this enhancement is met only for active layers in which annealing temperature is high enough (>1000 ◦C) for silicon nanocrystal (Si-nc) formation. Modeling of the system with rate equations has been done and excitation cross-sections for both Si-nc and Er3+ ions have been extracted.
Resumo:
High optical power density of 0.5 mW/cm2, external quantum efficiency of 0.1%, and population inversion of 7% are reported from Tb+-implanted silicon-rich silicon nitride/oxide light emitting devices. Electrical and electroluminescence mechanisms in these devices were investigated. The excitation cross section for the 543 nm Tb3+ emission was estimated under electrical pumping, resulting in a value of 8.2 × 10−14 cm2, which is one order of magnitude larger than one reported for Tb3+:SiO2 light emitting devices. These results demonstrate the potentiality of Tb+-implanted silicon nitride material for the development of integrated light sources compatible with Si technology.
Resumo:
Rib-loaded waveguides containing Er3+-coupled Si nanoclusters (Si-nc) have been produced to observe optical gain at 1535 nm. The presence ofSi-nc strongly improves the efficiency ofEr 3+ excitation but may introduce optical loss mechanisms, such as Mie scattering and confined carrier absorption. Losses strongly affect the possibility of obtaining positive optical gain. Si-nc-related losses have been minimized to 1 dB/cm by lowering the annealing time ofthe Er3+-doped silicon-rich oxide deposited by reactive magnetron cosputtering. Photoluminescence (PL) and lifetime measurements show that all Er3+ ions are optically active while those that can be excited at high pump rates via Si-nc are only a small percentage. Er3+ absorption cross section is found comparable to that ofEr 3+ in SiO 2.However, dependence on the effective refractive index has been found. In pump-probe measurements, it is shown how the detrimental role ofconfined carrier absorption can be attenuated by reducing the annealing time. A maximum signal enhancement ofabout 1.34 at 1535 nm was measured.
Resumo:
We report a spectroscopic study about the energy transfer mechanism among silicon nanoparticles (Si-np), both amorphous and crystalline, and Er ions in a silicon dioxide matrix. From infrared spectroscopic analysis, we have determined that the physics of the transfer mechanism does not depend on the Si-np nature, finding a fast (< 200 ns) energy transfer in both cases, while the amorphous nanoclusters reveal a larger transfer efficiency than the nanocrystals. Moreover, the detailed spectroscopic results in the visible range here reported are essential to understand the physics behind the sensitization effect, whose knowledge assumes a crucial role to enhance the transfer rate and possibly employing the material in optical amplifier devices. Joining the experimental data, performed with pulsed and continuous-wave excitation, we develop a model in which the internal intraband recombination within Si-np is competitive with the transfer process via an Auger electron"recycling" effect. Posing a different light on some detrimental mechanism such as Auger processes, our findings clearly recast the role of Si-np in the sensitization scheme, where they are able to excite very efficiently ions in close proximity to their surface. (C) 2010 American Institute of Physics.