56 resultados para Solid state lasers


Relevância:

80.00% 80.00%

Publicador:

Resumo:

En este trabajo se presenta un estudio detallado de los procesos implicados en la sulfurización de capas metálicas de Cu-In para la fabricación de células solares de CuInS2. Con este objeto, se ha desarrollado un experimento de sulfurización parcial de las capas, que han sido sometidas posteriormente a un tratamiento de selenización. El estudio de estas estructuras mediante Espectroscopía Raman y Espectroscopía de Electrones Auger (AES) ha permitido conocer algunos de los detalles de la reacción química, en concreto la identificación del frente de crecimiento de la reacción de sulfurización. Paralelamente, se ha desarrollado un sistema experimental que ha hecho posible investigar in-situ la reacción de sulfurización por Espectroscopía Raman, lo cual ha permitido un seguimiento preciso de la evolución estructural del material durante el proceso. Los resultados experimentales demuestran que la reacción de sulfurización se inicia en la superficie de la capa, dando lugar a la formación de CuInS2, coexistiendo dos estructuras cristalinas polimórficas (calcopirita y orden catiónico CuAu). Posteriormente la reacción química continúa asistida por la difusión de los metales hacia la superficie, que reaccionan con la atmósfera de azufre, de forma simultánea se produce una transformación de la fase CuAu del compuesto en la estructura calcopirita.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The potential for application of silicon nitride-based light sources to general lighting is reported. The mechanism of current injection and transport in silicon nitride layers and silicon oxide tunnel layers is determined by electro-optical characterization of both bi- and tri-layers. It is shown that red luminescence is due to bipolar injection by direct tunneling, whereas Poole-Frenkel ionization is responsible for blue-green emission. The emission appears warm white to the eye, and the technology has potential for large-area lighting devices. A photometric study, including color rendering, color quality and luminous efficacy of radiation, measured under various AC excitation conditions, is given for a spectrum deemed promising for lighting. A correlated color temperature of 4800K was obtained using a 35% duty cycle of the AC excitation signal. Under these conditions, values for general color rendering index of 93 and luminous efficacy of radiation of 112 lm/W are demonstrated. This proof of concept demonstrates that mature silicon technology, which is extendable to lowcost, large-area lamps, can be used for general lighting purposes. Once the external quantum efficiency is improved to exceed 10%, this technique could be competitive with other energy-efficient solid-state lighting options. ©2011 Optical Society of America OCIS codes: (230.2090) Electro-optical devices; (150.2950) Illumination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coulomb suppression of shot noise in a ballistic diode connected to degenerate ideal contacts is analyzed in terms of the correlations taking place between current fluctuations due to carriers injected with different energies. By using Monte Carlo simulations we show that at low frequencies the origin of Coulomb suppression can be traced back to the negative correlations existing between electrons injected with an energy close to that of the potential barrier present in the diode active region and all other carriers injected with higher energies. Correlations between electrons with energy above the potential barrier with the rest of electrons are found to influence significantly the spectra at high frequency in the cutoff region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By an analysis of the exchange of carriers through a semiconductor junction, a general relationship for the nonequilibrium population of the interface states in Schottky barrier diodes has been derived. Based on this relationship, an analytical expression for the ideality factor valid in the whole range of applied bias has been given. This quantity exhibits two different behaviours depending on the value of the applied bias with respect to a critical voltage. This voltage, which depends on the properties of the interfacial layer, constitutes a new parameter to complete the characterization of these junctions. A simple interpretation of the different behaviours of the ideality factor has been given in terms of the nonequilibrium charging properties of interface states, which in turn explains why apparently different approaches have given rise to similar results. Finally, the relevance of our results has been considered on the determination of the density of interface states from nonideal current-voltage characteristics and in the evaluation of the effects of the interfacial layer thickness in metal-insulator-semiconductor tunnelling diodes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The symmetrical two-dimensional quantum wire with two straight leads joined to an arbitrarily shaped interior cavity is studied with emphasis on the single-mode approximation. It is found that for both transmission and bound-state problems the solution is equivalent to that for an energy-dependent one-dimensional square well. Quantum wires with a circular bend, and with single and double right-angle bends, are examined as examples. We also indicate a possible way to detect bound states in a double bend based on the experimental setup of Wu et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thomas-Fermi theory is developed to evaluate nuclear matrix elements averaged on the energy shell, on the basis of independent particle Hamiltonians. One- and two-body matrix elements are compared with the quantal results, and it is demonstrated that the semiclassical matrix elements, as function of energy, well pass through the average of the scattered quantum values. For the one-body matrix elements it is shown how the Thomas-Fermi approach can be projected on good parity and also on good angular momentum. For the two-body case, the pairing matrix elements are considered explicitly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study strongly correlated ground and excited states of rotating quasi-2D Fermi gases constituted of a small number of dipole-dipole interacting particles with dipole moments polarized perpendicular to the plane of motion. As the number of atoms grows, the system enters an intermediate regime, where ground states are subject to a competition between distinct bulk-edge configurations. This effect obscures their description in terms of composite fermions and leads to the appearance of novel quasihole ground states. In the presence of dipolar interactions, the principal Laughlin state at filling upsilon=1/3 exhibits a substantial energy gap for neutral (total angular momentum conserving) excitations and is well-described as an incompressible Fermi liquid. Instead, at lower fillings, the ground state structure favors crystalline order.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that a minimal model for viscous fingering with a nematic liquid crystal in which anisotropy is considered to enter through two different viscosities in two perpendicular directions can be mapped to a twofold anisotropy in the surface tension. We numerically integrate the dynamics of the resulting problem with the phase-field approach to find and characterize a transition between tip splitting and side branching as a function of both anisotropy and dimensionless surface tension. This anisotropy dependence could explain the experimentally observed (reentrant) transition as temperature and applied pressure are varied. Our observations are also consistent with previous experimental evidence in viscous fingering within an etched cell and simulations of solidification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The kinetic domain-growth exponent is studied by Monte Carlo simulation as a function of temperature for a nonconserved order-parameter model. In the limit of zero temperature, the model belongs to the n=(1/4 slow-growth unversality class. This is indicative of a temporal pinning in the domain-boundary network of mixed-, zero-, and finite-curvature boundaries. At finite temperature the growth kinetics is found to cross over to the Allen-Cahn exponent n=(1/2. We obtain that the pinning time of the zero-curvature boundary decreases rapidly with increasing temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We calculate the ripplon field contribution to the self-energy of an electron exterior to a liquid for planar and spherical geometries. We compare the full dielectric calculation of the electron-liquid interaction with the simpler alternative method consisting of integrating the electron-atom static-induced-dipolar potential through the whole liquid volume. We obtain good agreement between both methods for a nonpolar liquid such as 4He but differences up to 40% for a polar liquid such as water. We study the conditions under which the ripplon contribution to the self-energy is a perturbation. For an electron moving parallel to a planar liquid surface, we calculate the ripplon contribution to its stopping power. For this dynamical case, we conclude that the alternative method is a good approximation even for polar liquids.