n=1/4 domain-growth universality class: Crossover to the n=1/2 class


Autoria(s): Castán i Vidal, Maria Teresa; Lindgård, Per-Anker
Contribuinte(s)

Universitat de Barcelona

Data(s)

04/05/2010

Resumo

The kinetic domain-growth exponent is studied by Monte Carlo simulation as a function of temperature for a nonconserved order-parameter model. In the limit of zero temperature, the model belongs to the n=(1/4 slow-growth unversality class. This is indicative of a temporal pinning in the domain-boundary network of mixed-, zero-, and finite-curvature boundaries. At finite temperature the growth kinetics is found to cross over to the Allen-Cahn exponent n=(1/2. We obtain that the pinning time of the zero-curvature boundary decreases rapidly with increasing temperature.

Identificador

http://hdl.handle.net/2445/9747

Idioma(s)

eng

Publicador

The American Physical Society

Direitos

(c) The American Physical Society, 1990

info:eu-repo/semantics/openAccess

Palavras-Chave #Física de l'estat sòlid #Mecànica estadística #Solid state physics #Statistical mechanics
Tipo

info:eu-repo/semantics/article