n=1/4 domain-growth universality class: Crossover to the n=1/2 class
Contribuinte(s) |
Universitat de Barcelona |
---|---|
Data(s) |
04/05/2010
|
Resumo |
The kinetic domain-growth exponent is studied by Monte Carlo simulation as a function of temperature for a nonconserved order-parameter model. In the limit of zero temperature, the model belongs to the n=(1/4 slow-growth unversality class. This is indicative of a temporal pinning in the domain-boundary network of mixed-, zero-, and finite-curvature boundaries. At finite temperature the growth kinetics is found to cross over to the Allen-Cahn exponent n=(1/2. We obtain that the pinning time of the zero-curvature boundary decreases rapidly with increasing temperature. |
Identificador | |
Idioma(s) |
eng |
Publicador |
The American Physical Society |
Direitos |
(c) The American Physical Society, 1990 info:eu-repo/semantics/openAccess |
Palavras-Chave | #Física de l'estat sòlid #Mecànica estadística #Solid state physics #Statistical mechanics |
Tipo |
info:eu-repo/semantics/article |