96 resultados para SCALAR CURVATURE
Resumo:
En aquest treball es tracten qüestions de la geometria integral clàssica a l'espai hiperbòlic i projectiu complex i a l'espai hermític estàndard, els anomenats espais de curvatura holomorfa constant. La geometria integral clàssica estudia, entre d'altres, l'expressió en termes geomètrics de la mesura de plans que tallen un domini convex fixat de l'espai euclidià. Aquesta expressió es dóna en termes de les integrals de curvatura mitja. Un dels resultats principals d'aquest treball expressa la mesura de plans complexos que tallen un domini fixat a l'espai hiperbòlic complex, en termes del que definim com volums intrínsecs hermítics, que generalitzen les integrals de curvatura mitja. Una altra de les preguntes que tracta la geometria integral clàssica és: donat un domini convex i l'espai de plans, com s'expressa la integral de la s-èssima integral de curvatura mitja del convex intersecció entre un pla i el convex fixat? A l'espai euclidià, a l'espai projectiu i hiperbòlic reals, aquesta integral correspon amb la s-èssima integral de curvatura mitja del convex inicial: se satisfà una propietat de reproductibitat, que no es té en els espais de curvatura holomorfa constant. En el treball donem l'expressió explícita de la integral de la curvatura mitja quan integrem sobre l'espai de plans complexos. L'expressem en termes de la integral de curvatura mitja del domini inicial i de la integral de la curvatura normal en una direcció especial: l'obtinguda en aplicar l'estructura complexa al vector normal. La motivació per estudiar els espais de curvatura holomorfa constant i, en particular, l'espai hiperbòlic complex, es troba en l'estudi del següent problema clàssic en geometria. Quin valor pren el quocient entre l'àrea i el perímetre per a successions de figures convexes del pla que creixen tendint a omplir-lo? Fins ara es coneixia el comportament d'aquest quocient en els espais de curvatura seccional negativa i que a l'espai hiperbòlic real les fites obtingudes són òptimes. Aquí provem que a l'espai hiperbòlic complex, les cotes generals no són òptimes i optimitzem la superior.
Resumo:
Continuity of set-valued maps is hereby revisited: after recalling some basic concepts of variational analysis and a short description of the State-of-the-Art, we obtain as by-product two Sard type results concerning local minima of scalar and vector valued functions. Our main result though, is inscribed in the framework of tame geometry, stating that a closed-valued semialgebraic set-valued map is almost everywhere continuous (in both topological and measure-theoretic sense). The result –depending on stratification techniques– holds true in a more general setting of o-minimal (or tame) set-valued maps. Some applications are briefly discussed at the end.
Resumo:
We prove existence theorems for the Dirichlet problem for hypersurfaces of constant special Lagrangian curvature in Hadamard manifolds. The first results are obtained using the continuity method and approximation and then refined using two iterations of the Perron method. The a-priori estimates used in the continuity method are valid in any ambient manifold.
Resumo:
We prove rigidity and vanishing theorems for several holomorphic Euler characteristics on complex contact manifolds admitting holomorphic circle actions preserving the contact structure. Such vanishings are reminiscent of those of LeBrun and Salamon on Fano contact manifolds but under a symmetry assumption instead of a curvature condition.
Resumo:
El nostre objectiu es l'estudi d'extensions de la Relativitat General i, en particular, estem interessats en les teories que continguin camps vectorials addicionals. En aquests tipus de teories es necessari imposar que el vector ha de tenir norma fixa per evitar la presència d'un fantasma o grau de llibertat amb terme cinètic negatiu, i això implica que la simetria Lorentz està trencada espontàniament. El camp del aether només interactua gravitatòriament i la seva presència es difícil de detectar, no obstant això, durant inflació les fluctuacions del buit a escales petites d'un camp lleuger pot deixar una empremta en observables com les anisotropies del fons de radiació de microones. Les fluctuacions del Einstein-aether es comporten com els camps sense massa i això fa que inflació generi modes de longitud de ona llarga en els sectors escalar i vectorial. Hem estudiat la signatura del Einstein-aether dins l'espectre de pertorbacions primordials lluny del límit de de Sitter de inflació. Aquests modes escalars i vectorials poden deixar una empremta significativa en la radiació de fons de microones en funció dels paràmetres del model. Les observacions del fons de radiació de microones imposen restriccions fenomenològiques que redueixen els límits existents per aquesta classe de teoria. Amb aquest estudi del aether també esperem millorar el coneixement que tenim de una classe més ampla de teories que exhibeixen el mateix tipus de trencament de simetria.
Resumo:
Es presenten els resultats experimentals obtinguts durant l’estudi sistemàtic realitzat de la preparació electroquímica de puntes de tungstè per al Microscopi d’Efecte Túnel (STM), fent servir dos electròlits: KOH i NaOH. L’estudi sobre la morfologia, longitud de la punta i radi de curvatura de la punta en funció del voltatge aplicat i les concentracions de l’electròlit es descriu al capítol 3. La caracterització de les puntes es va dur a terme, per una part, mitjançant un microscòpic electrònic de rastreig (SEM) i per l’altre banda, amb el ús de les puntes obtingudes al STM. En resumen, els resultats mostren que ambdós electròlits permeten obtenir puntes que es poden fer servir amb èxit per l’obtenció d’imatges amb l’STM. Les millors puntes són aquelles que s’obtenen dins de rangs de concentracions d’electròlit baixes, entre valor de 10 a 15% en pes pel NaOH i entre 10 i 20% pel KOH i rangs de voltatge entre 3 a 7 V pel NaOH i 4 a 8 V pel KOH. S’observa que es requereixen temps d’atac electroquímic menors fent servir com a electròlit NaOH. S’estudia, en el capítol 4, el tractament que requereix la punta per tal d’eliminar les impureses de la seva superfície. Es realitzen diferents proves amb tres mètodes de neteja: (1) tractament químic, (2) bombardeig iònic i (3) tractament tèrmic de recuit. En el capítol 5 del projecte s’analitzen les imatges d’una mostra d’or, Au(110), d’estructura coneguda, amb el microscopi d’efecte túnel STM) del laboratori fent servir les puntes obtingudes sota les condicions considerades òptimes. El resultat confirma el bon comportament de les puntes obtingudes sota les condicions descrites en els capítols anteriors i establert una pauta a seguir per obtenir puntes d’una manera senzilla i reproduïble.
Resumo:
This paper studies global webs on the projective plane with vanishing curvature. The study is based on an interplay of local and global arguments. The main local ingredient is a criterium for the regularity of the curvature at the neighborhood of a generic point of the discriminant. The main global ingredient, the Legendre transform, is an avatar of classical projective duality in the realm of differential equations. We show that the Legendre transform of what we call reduced convex foliations are webs with zero curvature, and we exhibit a countable infinity family of convex foliations which give rise to a family of webs with zero curvature not admitting non-trivial deformations with zero curvature.
Resumo:
We define a new version of the exterior derivative on the basic forms of a Riemannian foliation to obtain a new form of basic cohomology that satisfies Poincaré duality in the transversally orientable case. We use this twisted basic cohomology to show relationships between curvature, tautness, and vanishing of the basic Euler characteristic and basic signature.
Resumo:
Report for the scientific sojourn carried out at the Darmouth College, from august 2007 until february 2008. It has been very successful, from different viewpoints: scientific, philosophical, human. We have definitely advanced, during the past six months, towards the comprehension of the behaviour of the fluctuations of the quantum vacuum in the presence of boundaries, moving and non-moving, and also in situations where the topology of space-time changes: the dynamical Casimir effect, regularization problems, particle creation statistics, according to different BC, etc. We have solved some longstanding problems and got in this subject quite remarkable results (as we will explain in more detail below). We also pursued a general approach towards a viable modified f(R) gravity in both the Jordan and the Einstein frames (which are known to be mathematically equivalent, but physically not so). A class of exponential, realistic modified gravities has been introduced by us and investigated with care. Special focus was made on step-class models, most promising from the phenomenological viewpoint and which provide a natural way to classify all viable modified gravities. One- and two-steps models were considered, but the analysis is extensible to N-step models. Both inflation in the early universe and the onset of recent accelerated expansion arise in these models in a natural, unified way, what makes them very promising. Moreover, it is monstrated in our work that models in this category easily pass all local tests, including stability of spherical body solution, non-violation of Newton's law, and generation of a very heavy positive mass for the additional scalar degree of freedom.
Resumo:
Objective: To compare pressure–volume (P–V) curves obtained with the Galileo ventilator with those obtained with the CPAP method in patients with ALI or ARDS receiving mechanical ventilation. P–V curves were fitted to a sigmoidal equation with a mean R2 of 0.994 ± 0.003. Lower (LIP) and upper inflection (UIP), and deflation maximum curvature (PMC) points calculated from the fitted variables showed a good correlation between methods with high intraclass correlation coefficients. Bias and limits of agreement for LIP, UIP and PMC obtained with the two methods in the same patient were clinically acceptable.
Resumo:
We show that any transversally complete Riemannian foliation &em&F&/em& of dimension one on any possibly non-compact manifold M is tense; namely, (M,&em&F&/em&) admits a Riemannian metric such that the mean curvature form of &em&F&/em& is basic. This is a partial generalization of a result of Domínguez, which says that any Riemannian foliation on any compact manifold is tense. Our proof is based on some results of Molino and Sergiescu, and it is simpler than the original proof by Domínguez. As an application, we generalize some well known results including Masa's characterization of tautness.
Resumo:
We report experimental and numerical results showing how certain N-dimensional dynamical systems are able to exhibit complex time evolutions based on the nonlinear combination of N-1 oscillation modes. The experiments have been done with a family of thermo-optical systems of effective dynamical dimension varying from 1 to 6. The corresponding mathematical model is an N-dimensional vector field based on a scalar-valued nonlinear function of a single variable that is a linear combination of all the dynamic variables. We show how the complex evolutions appear associated with the occurrence of successive Hopf bifurcations in a saddle-node pair of fixed points up to exhaust their instability capabilities in N dimensions. For this reason the observed phenomenon is denoted as the full instability behavior of the dynamical system. The process through which the attractor responsible for the observed time evolution is formed may be rather complex and difficult to characterize. Nevertheless, the well-organized structure of the time signals suggests some generic mechanism of nonlinear mode mixing that we associate with the cluster of invariant sets emerging from the pair of fixed points and with the influence of the neighboring saddle sets on the flow nearby the attractor. The generation of invariant tori is likely during the full instability development and the global process may be considered as a generalized Landau scenario for the emergence of irregular and complex behavior through the nonlinear superposition of oscillatory motions
Resumo:
Demosaicking is a particular case of interpolation problems where, from a scalar image in which each pixel has either the red, the green or the blue component, we want to interpolate the full-color image. State-of-the-art demosaicking algorithms perform interpolation along edges, but these edges are estimated locally. We propose a level-set-based geometric method to estimate image edges, inspired by the image in-painting literature. This method has a time complexity of O(S) , where S is the number of pixels in the image, and compares favorably with the state-of-the-art algorithms both visually and in most relevant image quality measures.
Resumo:
Expressions relating spectral efficiency, power, and Doppler spectrum, are derived for Rayleigh-faded wireless channels with Gaussian signal transmission. No side information on the state of the channel is assumed at the receiver. Rather, periodic reference signals are postulated in accordance with the functioning of most wireless systems. The analysis relies on a well-established lower bound, generally tight and asymptotically exact at low SNR. In contrast with most previous studies, which relied on block-fading channel models, a continuous-fading model is adopted. This embeds the Doppler spectrum directly in the derived expressions, imbuing them with practical significance. Closed-form relationships are obtained for the popular Clarke-Jakes spectrum and informative expansions, valid for arbitrary spectra, are found for the low- and high-power regimes. While the paper focuses on scalar channels, the extension to multiantenna settings is also discussed.
Resumo:
We present a method to compute, quickly and efficiently, the mutual information achieved by an IID (independent identically distributed) complex Gaussian signal on a block Rayleigh-faded channel without side information at the receiver. The method accommodates both scalar and MIMO (multiple-input multiple-output) settings. Operationally, this mutual information represents the highest spectral efficiency that can be attained using Gaussiancodebooks. Examples are provided that illustrate the loss in spectral efficiency caused by fast fading and how that loss is amplified when multiple transmit antennas are used. These examples are further enriched by comparisons with the channel capacity under perfect channel-state information at the receiver, and with the spectral efficiency attained by pilot-based transmission.