Tenseness of Riemannian flows
Contribuinte(s) |
Centre de Recerca Matemàtica |
---|---|
Data(s) |
01/11/2012
|
Resumo |
We show that any transversally complete Riemannian foliation &em&F&/em& of dimension one on any possibly non-compact manifold M is tense; namely, (M,&em&F&/em&) admits a Riemannian metric such that the mean curvature form of &em&F&/em& is basic. This is a partial generalization of a result of Domínguez, which says that any Riemannian foliation on any compact manifold is tense. Our proof is based on some results of Molino and Sergiescu, and it is simpler than the original proof by Domínguez. As an application, we generalize some well known results including Masa's characterization of tautness. |
Formato |
17 p. |
Identificador | |
Idioma(s) |
eng |
Publicador |
Centre de Recerca Matemàtica |
Relação |
Prepublicacions del Centre de Recerca Matemàtica;1124 |
Direitos |
info:eu-repo/semantics/openAccess L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
Fonte |
RECERCAT (Dipòsit de la Recerca de Catalunya) |
Palavras-Chave | #Geometria diferencial #Foliacions (Matemàtica) #514 - Geometria |
Tipo |
info:eu-repo/semantics/preprint |