Tenseness of Riemannian flows


Autoria(s): Nozawa, Hiraku; Royo Prieto, José Ignacio
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

01/11/2012

Resumo

We show that any transversally complete Riemannian foliation &em&F&/em& of dimension one on any possibly non-compact manifold M is tense; namely, (M,&em&F&/em&) admits a Riemannian metric such that the mean curvature form of &em&F&/em& is basic. This is a partial generalization of a result of Domínguez, which says that any Riemannian foliation on any compact manifold is tense. Our proof is based on some results of Molino and Sergiescu, and it is simpler than the original proof by Domínguez. As an application, we generalize some well known results including Masa's characterization of tautness.

Formato

17 p.

Identificador

http://hdl.handle.net/2072/205479

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;1124

Direitos

info:eu-repo/semantics/openAccess

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Fonte

RECERCAT (Dipòsit de la Recerca de Catalunya)

Palavras-Chave #Geometria diferencial #Foliacions (Matemàtica) #514 - Geometria
Tipo

info:eu-repo/semantics/preprint