43 resultados para Partial Least Square
Resumo:
Projecte de recerca elaborat a partir d’una estada a la Università degli studi di Siena, Italy , entre 2007 i 2009. El projecte ha consistit en un estudi de la formalització lògica del raonament en presència de vaguetat amb els mètodes de la Lògica Algebraica i de la Teoria de la Prova. S'ha treballat fonamental en quatre direccions complementàries. En primer lloc, s'ha proposat un nou plantejament, més abstracte que el paradigma dominant fins ara, per l'estudi dels sistemes de lògica borrosa. Fins ara en l'estudi d'aquests sistemes l'atenció havia recaigut essencialment en l'obtenció de semàntiques basades en tnormes contínues (o almenys contínues per l'esquerra). En primer nivell de major abstracció hem estudiat les propietats de completesa de les lògiques borroses (tant proposicionals com de primer ordre) respecte de semàntiques definides sobre qualsevol cadena de valors de veritat, no necessàriament només sobre l'interval unitat dels nombres reals. A continuació, en un nivell encara més abstracte, s’ha pres l'anomenada jerarquia de Leibniz de la Lògica Algebraica Abstracta que classifica tots els sistemes lògics amb un bon comportament algebraic i s'ha expandit a una nova jerarquia (que anomenem implicacional) que permet definir noves classes de lògiques borroses que contenen quasi totes les conegudes fins ara. En segon lloc, s’ha continuat una línia d'investigació iniciada els darrers anys consistent en l'estudi de la veritat parcial com a noció sintàctica (és a dir, com a constants de veritat explícites en els sistemes de prova de les lògiques borroses). Per primer cop, s’ha considerat la semàntica racional per les lògiques proposicionals i la semàntica real i racional per les lògiques de primer ordre expandides amb constants. En tercer lloc, s’ha tractat el problema més fonamental del significat i la utilitat de les lògiques borroses com a modelitzadores de (part de) els fenòmens de la vaguetat en un darrer article de caràcter més filosòfic i divulgatiu, i en un altre més tècnic en què defensem la necessitat i presentem l'estat de l'art de l'estudi de les estructures algèbriques associades a les lògiques borroses. Finalment, s’ha dedicat la darrera part del projecte a l'estudi de la complexitat aritmètica de les lògiques borroses de primer ordre.
Resumo:
In this paper, different recovery methods applied at different network layers and time scales are used in order to enhance the network reliability. Each layer deploys its own fault management methods. However, current recovery methods are applied to only a specific layer. New protection schemes, based on the proposed partial disjoint path algorithm, are defined in order to avoid protection duplications in a multi-layer scenario. The new protection schemes also encompass shared segment backup computation and shared risk link group identification. A complete set of experiments proves the efficiency of the proposed methods in relation with previous ones, in terms of resources used to protect the network, the failure recovery time and the request rejection ratio
Resumo:
This paper fills a gap in the existing literature on least squareslearning in linear rational expectations models by studying a setup inwhich agents learn by fitting ARMA models to a subset of the statevariables. This is a natural specification in models with privateinformation because in the presence of hidden state variables, agentshave an incentive to condition forecasts on the infinite past recordsof observables. We study a particular setting in which it sufficesfor agents to fit a first order ARMA process, which preserves thetractability of a finite dimensional parameterization, while permittingconditioning on the infinite past record. We describe how previousresults (Marcet and Sargent [1989a, 1989b] can be adapted to handlethe convergence of estimators of an ARMA process in our self--referentialenvironment. We also study ``rates'' of convergence analytically and viacomputer simulation.
Resumo:
We show that if performance measures in a stochastic scheduling problem satisfy a set of so-called partial conservation laws (PCL), which extend previously studied generalized conservation laws (GCL), then the problem is solved optimally by a priority-index policy for an appropriate range of linear performance objectives, where the optimal indices are computed by a one-pass adaptive-greedy algorithm, based on Klimov's. We further apply this framework to investigate the indexability property of restless bandits introduced by Whittle, obtaining the following results: (1) we identify a class of restless bandits (PCL-indexable) which are indexable; membership in this class is tested through a single run of the adaptive-greedy algorithm, which also computes the Whittle indices when the test is positive; this provides a tractable sufficient condition for indexability; (2) we further indentify the class of GCL-indexable bandits, which includes classical bandits, having the property that they are indexable under any linear reward objective. The analysis is based on the so-called achievable region method, as the results follow fromnew linear programming formulations for the problems investigated.
Resumo:
The application of correspondence analysis to square asymmetrictables is often unsuccessful because of the strong role played by thediagonal entries of the matrix, obscuring the data off the diagonal. A simplemodification of the centering of the matrix, coupled with the correspondingchange in row and column masses and row and column metrics, allows the tableto be decomposed into symmetric and skew--symmetric components, which canthen be analyzed separately. The symmetric and skew--symmetric analyses canbe performed using a simple correspondence analysis program if the data areset up in a special block format.
Resumo:
A family of scaling corrections aimed to improve the chi-square approximation of goodness-of-fit test statistics in small samples, large models, and nonnormal data was proposed in Satorra and Bentler (1994). For structural equations models, Satorra-Bentler's (SB) scaling corrections are available in standard computer software. Often, however, the interest is not on the overall fit of a model, but on a test of the restrictions that a null model say ${\cal M}_0$ implies on a less restricted one ${\cal M}_1$. If $T_0$ and $T_1$ denote the goodness-of-fit test statistics associated to ${\cal M}_0$ and ${\cal M}_1$, respectively, then typically the difference $T_d = T_0 - T_1$ is used as a chi-square test statistic with degrees of freedom equal to the difference on the number of independent parameters estimated under the models ${\cal M}_0$ and ${\cal M}_1$. As in the case of the goodness-of-fit test, it is of interest to scale the statistic $T_d$ in order to improve its chi-square approximation in realistic, i.e., nonasymptotic and nonnormal, applications. In a recent paper, Satorra (1999) shows that the difference between two Satorra-Bentler scaled test statistics for overall model fit does not yield the correct SB scaled difference test statistic. Satorra developed an expression that permits scaling the difference test statistic, but his formula has some practical limitations, since it requires heavy computations that are notavailable in standard computer software. The purpose of the present paper is to provide an easy way to compute the scaled difference chi-square statistic from the scaled goodness-of-fit test statistics of models ${\cal M}_0$ and ${\cal M}_1$. A Monte Carlo study is provided to illustrate the performance of the competing statistics.
Resumo:
This paper analyses the robustness of Least-Squares Monte Carlo, a techniquerecently proposed by Longstaff and Schwartz (2001) for pricing Americanoptions. This method is based on least-squares regressions in which theexplanatory variables are certain polynomial functions. We analyze theimpact of different basis functions on option prices. Numerical resultsfor American put options provide evidence that a) this approach is veryrobust to the choice of different alternative polynomials and b) few basisfunctions are required. However, these conclusions are not reached whenanalyzing more complex derivatives.
Resumo:
Multiexponential decays may contain time-constants differing in several orders of magnitudes. In such cases, uniform sampling results in very long records featuring a high degree of oversampling at the final part of the transient. Here, we analyze a nonlinear time scale transformation to reduce the total number of samples with minimum signal distortion, achieving an important reduction of the computational cost of subsequent analyses. We propose a time-varying filter whose length is optimized for minimum mean square error
Resumo:
We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed
Resumo:
The symmetrical two-dimensional quantum wire with two straight leads joined to an arbitrarily shaped interior cavity is studied with emphasis on the single-mode approximation. It is found that for both transmission and bound-state problems the solution is equivalent to that for an energy-dependent one-dimensional square well. Quantum wires with a circular bend, and with single and double right-angle bends, are examined as examples. We also indicate a possible way to detect bound states in a double bend based on the experimental setup of Wu et al.
Resumo:
Thin films of hydrogenated amorphous silicon (a‐Si:H), deposited by square wave modulated (SQWM) rf silane discharges, have been studied through spectroscopic and real time phase modulated ellipsometry. The SQMW films obtained at low mean rf power density (19 mW/cm2) have shown smaller surface roughness than those obtained in standard continuous wave (cw) rf discharges. At higher rf powers (≥56 mW/cm2), different behaviors depending on the modulating frequency have been observed. On the one hand, at low modulating frequencies (<40 Hz), the SQWM films have shown a significant increase of porosity and surface roughness as compared to cw samples. On the other, at higher modulating frequencies, the material density and roughness have been found to be similar in SQWM and cw films. Furthermore, the deposition rate of the films show more pronounced increases with the modulating frequency as the rf power is increased. Experimental results are discussed in terms of plasma negative charged species which can be relatively abundant in high rf power discharges and cause significant effects on the deposited layers through polymers, clusters, and powder formation.