92 resultados para Nash-Equilibrium
Resumo:
We consider the collective incentives of buyers and sellers to form cartels in markets where trade is realized through decentralized pairwise bargaining. Cartels are coalitions of buyers or sellers that limit market participation and compensate inactive members for abstaining from trade. In a stable market outcome, cartels set Nash equilibrium quantities and cartel memberships are immune to defections. We prove that the set of stable market outcomes is non-empty and we provide its full characterization. Stable market outcomes are of two types: (i) at least one cartel actively restrains trade and the levels of market participation are balanced, or (ii) only one cartel, eventually the cartel that forms on the long side of the market, is active and it reduces trade slightly below the opponent's.
Resumo:
We use structural methods to assess equilibrium models of bidding with data from first-price auction experiments. We identify conditions to test the Nash equilibrium models for homogenous and for heterogeneous constant relative risk aversion when bidders private valuations are independent and uniformly drawn. The outcomes of our study indicate that behavior may have been affected by the procedure used to conduct the experiments and that the usual Nash equilibrium model for heterogeneous constant relative risk averse bidders does not consistently explain the observed overbidding. From an empirical standpoint, our analysis shows the possible drawbacks of overlooking the homogeneity hypothesis when testing symmetric equilibrium models of bidding and it puts in perspective the sensitivity of structural inferences to the available information.
Resumo:
Recently, several school districts in the US have adopted or consider adopting the Student-Optimal Stable Mechanism or the Top Trading Cycles Mechanism to assign children to public schools. There is clear evidence that for school districts that employ (variants of) the so-called Boston Mechanism the transition would lead to efficiency gains. The first two mechanisms are strategy-proof, but in practice student assignment procedures impede students to submit a preference list that contains all their acceptable schools. Therefore, any desirable property of the mechanisms is likely toget distorted. We study the non trivial preference revelation game where students can only declare up to a fixed number (quota) of schools to be acceptable. We focus on the stability of the Nash equilibrium outcomes. Our main results identify rather stringent necessary and sufficient conditions on the priorities to guaranteestability. This stands in sharp contrast with the Boston Mechanism which yields stable Nash equilibrium outcomes, independently of the quota. Hence, the transition to any of the two mechanisms is likely to come with a higher risk that students seek legal actionas lower priority students may occupy more preferred schools.
Resumo:
We characterize the sharing rule for which a contribution mechanism achieves efficiency in a cooperative production setting when agents are heterogeneous. The sharing rule bears no resemblance to those considered by the previous literature. We also show for a large class of sharing rules that if Nash equilibrium yields efficient allocations, the production function displays constant returns to scale, a case in which cooperation in production is useless.
Resumo:
We introduce and study a class of infinite-horizon nonzero-sum non-cooperative stochastic games with infinitely many interacting agents using ideas of statistical mechanics. First we show, in the general case of asymmetric interactions, the existence of a strategy that allows any player to eliminate losses after a finite random time. In the special case of symmetric interactions, we also prove that, as time goes to infinity, the game converges to a Nash equilibrium. Moreover, assuming that all agents adopt the same strategy, using arguments related to those leading to perfect simulation algorithms, spatial mixing and ergodicity are proved. In turn, ergodicity allows us to prove “fixation”, i.e. that players will adopt a constant strategy after a finite time. The resulting dynamics is related to zerotemperature Glauber dynamics on random graphs of possibly infinite volume.
Resumo:
This paper characterizes a mixed strategy Nash equilibrium in a one-dimensional Downsian model of two-candidate elections with a continuous policy space, where candidates are office motivated and one candidate enjoys a non-policy advantage over the other candidate. We assume that voters have quadratic preferences over policies and that their ideal points are drawn from a uniform distribution over the unit interval. In our equilibrium the advantaged candidate chooses the expected median voter with probability one and the disadvantaged candidate uses a mixed strategy that is symmetric around it. We show that this equilibrium exists if the number of voters is large enough relative to the size of the advantage.
Resumo:
This article introduces a model of rationality that combines procedural utility over actions with consequential utility over payoffs. It applies the model to the Prisoners Dilemma and shows that empirically observed cooperative behaviors can be rationally explained by a procedural utility for cooperation. The model characterizes the situations in which cooperation emerges as a Nash equilibrium. When rational individuals are not solely concerned by the consequences of their behavior but also care for the process by which these consequences are obtained, there is no one single rational solution to a Prisoners Dilemma. Rational behavior depends on the payoffs at stake and on the procedural utility of individuals. In this manner, this model of procedural utility reflects how ethical considerations, social norms or emotions can transform a game of consequences.
Resumo:
A model of directed search with a finite number of buyers and sellers is considered, where sellers compete in direct mechanisms. Buyer heterogeneity and Nash equilibrium results in perfect sorting. The restriction to complementary inputs, that the match value function Q is supermodular, in addition coordinates the sellers strategies. In that case, equilibrium implements positive assortative matching, which is efficient and consistent with the stable (cooperative equilibrium) outcome. This provides a non-cooperative and decentralizedsolution for the Assignment Game. Conversely, if buyers are identical, no such coordination is possible, and there is a continuum of equilibria, one of which exhibits price posting, another yields competition in auctions.
Resumo:
Small sample properties are of fundamental interest when only limited data is avail-able. Exact inference is limited by constraints imposed by speci.c nonrandomizedtests and of course also by lack of more data. These e¤ects can be separated as we propose to evaluate a test by comparing its type II error to the minimal type II error among all tests for the given sample. Game theory is used to establish this minimal type II error, the associated randomized test is characterized as part of a Nash equilibrium of a .ctitious game against nature.We use this method to investigate sequential tests for the di¤erence between twomeans when outcomes are constrained to belong to a given bounded set. Tests ofinequality and of noninferiority are included. We .nd that inference in terms oftype II error based on a balanced sample cannot be improved by sequential sampling or even by observing counter factual evidence providing there is a reasonable gap between the hypotheses.
Resumo:
This paper studies sequential auctions of licences to operate in amarket where those firms that obtain at least one licence then engage ina symmetric market game. I employ a new refinement of Nash equilibrium,the concept of {\sl Markovian recursively undominated equilibrium}.The unique solution satisfies the following properties: (i) when severalfirms own licences before the auction (incumbents), new entrants buylicences in each stage, and (ii) when there is no more than one incumbent,either the single firm preempts entry altogether or entry occurs inevery stage, depending on the parameter configuration.
Resumo:
This article introduces a model of rationality that combines procedural utility over actions with consequential utility over payoffs. It applies the model to the Prisoners Dilemma and shows that empirically observed cooperative behaviors can be rationally explained by a procedural utility for cooperation. The model characterizes the situations in which cooperation emerges as a Nash equilibrium. When rational individuals are not solely concerned by the consequences of their behavior but also care for the process by which these consequences are obtained, there is no one single rational solution to a Prisoners Dilemma. Rational behavior depends on the payoffs at stake and on the procedural utility of individuals. In this manner, this model of procedural utility reflects how ethical considerations, social norms or emotions can transform a game of consequences.
Resumo:
In this paper we provide a full characterization of the pure-strategyNash Equilibria for the p-Beauty Contest Game when we restrict player schoices to integer numbers. Opposed to the case of real number choices,equilibrium uniqueness may be lost depending on the value of p and thenumber of players: in particular, as p approaches 1 any symmetric profileconstitutes a Nash Equilibrium. We also show that any experimental p-BeautyContest Game can be associated to a game with the integer restriction andthus multiplicity of equilibria becomes an issue. Finally, we show thatin these games the iterated deletion of weakly dominated strategies maynot lead to a single outcome while the iterated best-reply process alwaysdoes (though the outcome obtained depends on the initial conditions).
Resumo:
We run experiments on English Auctions where the bidders already own a part (toehold) ofthe good for sale. The theory predicts a very strong effect of even small toeholds, however wefind the effects are not so strong in the lab. We explain this by analyzing the flatness of thepayoff functions, which leads to relatively costless deviations from the equilibrium strategies.We find that a levels of reasoning model explains the results better than the Nash equilibrium.Moreover, we find that although big toeholds can be effective, the cost to acquire them mightbe higher than the strategic benefit they bring. Finally our results show that in general theseller s revenues fall when the playing field is uneven.
Resumo:
The two essential features of a decentralized economy taken intoaccount are, first, that individual agents need some informationabout other agents in order to meet potential trading partners,which requires some communication or interaction between theseagents, and second, that in general agents will face tradinguncertainty. We consider trade in a homogeneous commodity. Firmsdecide upon their effective supplies, and may create their ownmarkets by sending information signals communicating theirwillingness to sell. Meeting of potential trading partners isarranged in the form of shopping by consumers. The questions to beconsidered are: How do firms compete in such markets? And what arethe properties of an equilibrium? We establish existenceconditions for a symmetric Nash equilibrium in the firms'strategies, and analyze its characteristics. The developedframework appears to lend itself well to study many typicalphenomena of decentralized economies, such as the emergence ofcentral markets, the role of middlemen, and price-making.
Resumo:
I study monotonicity and uniqueness of the equilibrium strategies in a two-person first price auction with affiliated signals. I show thatwhen the game is symmetric there is a unique Nash equilibrium thatsatisfies a regularity condition requiring that the equilibrium strategies be{\sl piecewise monotone}. Moreover, when the signals are discrete-valued, the equilibrium is unique. The central part of the proof consists of showing that at any regular equilibrium the bidders' strategies must be monotone increasing within the support of winning bids. The monotonicity result derived in this paper provides the missing link for the analysis of uniqueness in two-person first price auctions. Importantly, this result extends to asymmetric auctions.