66 resultados para Motion-based estimation
Resumo:
Lean meat percentage (LMP) is an important carcass quality parameter. The aim of this work is to obtain a calibration equation for the Computed Tomography (CT) scans with the Partial Least Square Regression (PLS) technique in order to predict the LMP of the carcass and the different cuts and to study and compare two different methodologies of the selection of the variables (Variable Importance for Projection — VIP- and Stepwise) to be included in the prediction equation. The error of prediction with cross-validation (RMSEPCV) of the LMP obtained with PLS and selection based on VIP value was 0.82% and for stepwise selection it was 0.83%. The prediction of the LMP scanning only the ham had a RMSEPCV of 0.97% and if the ham and the loin were scanned the RMSEPCV was 0.90%. Results indicate that for CT data both VIP and stepwise selection are good methods. Moreover the scanning of only the ham allowed us to obtain a good prediction of the LMP of the whole carcass.
Resumo:
Abstract. Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Because conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. It is shown that as the number of simulations diverges, the estimator is consistent and a higher-order expansion reveals the stochastic difference between the infeasible GMM estimator based on the same moment conditions and the simulated version. In particular, we show how to adjust standard errors to account for the simulations. Monte Carlo results show how the estimator may be applied to a range of dynamic latent variable (DLV) models, and that it performs well in comparison to several other estimators that have been proposed for DLV models.
Resumo:
This paper presents an analysis of motor vehicle insurance claims relating to vehicle damage and to associated medical expenses. We use univariate severity distributions estimated with parametric and non-parametric methods. The methods are implemented using the statistical package R. Parametric analysis is limited to estimation of normal and lognormal distributions for each of the two claim types. The nonparametric analysis presented involves kernel density estimation. We illustrate the benefits of applying transformations to data prior to employing kernel based methods. We use a log-transformation and an optimal transformation amongst a class of transformations that produces symmetry in the data. The central aim of this paper is to provide educators with material that can be used in the classroom to teach statistical estimation methods, goodness of fit analysis and importantly statistical computing in the context of insurance and risk management. To this end, we have included in the Appendix of this paper all the R code that has been used in the analysis so that readers, both students and educators, can fully explore the techniques described
Resumo:
This paper analyses the impact of using different correlation assumptions between lines of business when estimating the risk-based capital reserve, the Solvency Capital Requirement (SCR), under Solvency II regulations. A case study is presented and the SCR is calculated according to the Standard Model approach. Alternatively, the requirement is then calculated using an Internal Model based on a Monte Carlo simulation of the net underwriting result at a one-year horizon, with copulas being used to model the dependence between lines of business. To address the impact of these model assumptions on the SCR we conduct a sensitivity analysis. We examine changes in the correlation matrix between lines of business and address the choice of copulas. Drawing on aggregate historical data from the Spanish non-life insurance market between 2000 and 2009, we conclude that modifications of the correlation and dependence assumptions have a significant impact on SCR estimation.
Resumo:
Hem realitzat l’estudi de moviments humans i hem buscat la forma de poder crear aquests moviments en temps real sobre entorns digitals de forma que la feina que han de dur a terme els artistes i animadors sigui reduïda. Hem fet un estudi de les diferents tècniques d’animació de personatges que podem trobar actualment en l’industria de l’entreteniment així com les principals línies de recerca, estudiant detingudament la tècnica més utilitzada, la captura de moviments. La captura de moviments permet enregistrar els moviments d’una persona mitjançant sensors òptics, sensors magnètics i vídeo càmeres. Aquesta informació és emmagatzemada en arxius que després podran ser reproduïts per un personatge en temps real en una aplicació digital. Tot moviment enregistrat ha d’estar associat a un personatge, aquest és el procés de rigging, un dels punts que hem treballat ha estat la creació d’un sistema d’associació de l’esquelet amb la malla del personatge de forma semi-automàtica, reduint la feina de l’animador per a realitzar aquest procés. En les aplicacions en temps real com la realitat virtual, cada cop més s’està simulant l’entorn en el que viuen els personatges mitjançant les lleis de Newton, de forma que tot canvi en el moviment d’un cos ve donat per l’aplicació d’una força sobre aquest. La captura de moviments no escala bé amb aquests entorns degut a que no és capaç de crear noves animacions realistes a partir de l’enregistrada que depenguin de l’interacció amb l’entorn. L’objectiu final del nostre treball ha estat realitzar la creació d’animacions a partir de forces tal i com ho fem en la realitat en temps real. Per a això hem introduït un model muscular i un sistema de balanç sobre el personatge de forma que aquest pugui respondre a les interaccions amb l’entorn simulat mitjançant les lleis de Newton de manera realista.
Resumo:
A parts based model is a parametrization of an object class using a collection of landmarks following the object structure. The matching of parts based models is one of the problems where pairwise Conditional Random Fields have been successfully applied. The main reason of their effectiveness is tractable inference and learning due to the simplicity of involved graphs, usually trees. However, these models do not consider possible patterns of statistics among sets of landmarks, and thus they sufffer from using too myopic information. To overcome this limitation, we propoese a novel structure based on a hierarchical Conditional Random Fields, which we explain in the first part of this memory. We build a hierarchy of combinations of landmarks, where matching is performed taking into account the whole hierarchy. To preserve tractable inference we effectively sample the label set. We test our method on facial feature selection and human pose estimation on two challenging datasets: Buffy and MultiPIE. In the second part of this memory, we present a novel approach to multiple kernel combination that relies on stacked classification. This method can be used to evaluate the landmarks of the parts-based model approach. Our method is based on combining responses of a set of independent classifiers for each individual kernel. Unlike earlier approaches that linearly combine kernel responses, our approach uses them as inputs to another set of classifiers. We will show that we outperform state-of-the-art methods on most of the standard benchmark datasets.
Resumo:
The estimation of camera egomotion is a well established problem in computer vision. Many approaches have been proposed based on both the discrete and the differential epipolar constraint. The discrete case is mainly used in self-calibrated stereoscopic systems, whereas the differential case deals with a unique moving camera. The article surveys several methods for mobile robot egomotion estimation covering more than 0.5 million samples using synthetic data. Results from real data are also given
Resumo:
This paper presents an automatic vision-based system for UUV station keeping. The vehicle is equipped with a down-looking camera, which provides images of the sea-floor. The station keeping system is based on a feature-based motion detection algorithm, which exploits standard correlation and explicit textural analysis to solve the correspondence problem. A visual map of the area surveyed by the vehicle is constructed to increase the flexibility of the system, allowing the vehicle to position itself when it has lost the reference image. The testing platform is the URIS underwater vehicle. Experimental results demonstrating the behavior of the system on a real environment are presented
Resumo:
When unmanned underwater vehicles (UUVs) perform missions near the ocean floor, optical sensors can be used to improve local navigation. Video mosaics allow to efficiently process the images acquired by the vehicle, and also to obtain position estimates. We discuss in this paper the role of lens distortions in this context, proving that degenerate mosaics have their origin not only in the selected motion model or in registration errors, but also in the cumulative effect of radial distortion residuals. Additionally, we present results on the accuracy of different feature-based approaches for self-correction of lens distortions that may guide the choice of appropriate techniques for correcting distortions
Resumo:
This paper describes the improvements achieved in our mosaicking system to assist unmanned underwater vehicle navigation. A major advance has been attained in the processing of images of the ocean floor when light absorption effects are evident. Due to the absorption of natural light, underwater vehicles often require artificial light sources attached to them to provide the adequate illumination for processing underwater images. Unfortunately, these flashlights tend to illuminate the scene in a nonuniform fashion. In this paper a technique to correct non-uniform lighting is proposed. The acquired frames are compensated through a point-by-point division of the image by an estimation of the illumination field. Then, the gray-levels of the obtained image remapped to enhance image contrast. Experiments with real images are presented
Resumo:
This paper deals with the problem of navigation for an unmanned underwater vehicle (UUV) through image mosaicking. It represents a first step towards a real-time vision-based navigation system for a small-class low-cost UUV. We propose a navigation system composed by: (i) an image mosaicking module which provides velocity estimates; and (ii) an extended Kalman filter based on the hydrodynamic equation of motion, previously identified for this particular UUV. The obtained system is able to estimate the position and velocity of the robot. Moreover, it is able to deal with visual occlusions that usually appear when the sea bottom does not have enough visual features to solve the correspondence problem in a certain area of the trajectory
Resumo:
This paper proposes a parallel architecture for estimation of the motion of an underwater robot. It is well known that image processing requires a huge amount of computation, mainly at low-level processing where the algorithms are dealing with a great number of data. In a motion estimation algorithm, correspondences between two images have to be solved at the low level. In the underwater imaging, normalised correlation can be a solution in the presence of non-uniform illumination. Due to its regular processing scheme, parallel implementation of the correspondence problem can be an adequate approach to reduce the computation time. Taking into consideration the complexity of the normalised correlation criteria, a new approach using parallel organisation of every processor from the architecture is proposed
Resumo:
In this paper we present a novel structure from motion (SfM) approach able to infer 3D deformable models from uncalibrated stereo images. Using a stereo setup dramatically improves the 3D model estimation when the observed 3D shape is mostly deforming without undergoing strong rigid motion. Our approach first calibrates the stereo system automatically and then computes a single metric rigid structure for each frame. Afterwards, these 3D shapes are aligned to a reference view using a RANSAC method in order to compute the mean shape of the object and to select the subset of points on the object which have remained rigid throughout the sequence without deforming. The selected rigid points are then used to compute frame-wise shape registration and to extract the motion parameters robustly from frame to frame. Finally, all this information is used in a global optimization stage with bundle adjustment which allows to refine the frame-wise initial solution and also to recover the non-rigid 3D model. We show results on synthetic and real data that prove the performance of the proposed method even when there is no rigid motion in the original sequence
Resumo:
In networks with small buffers, such as optical packet switching based networks, the convolution approach is presented as one of the most accurate method used for the connection admission control. Admission control and resource management have been addressed in other works oriented to bursty traffic and ATM. This paper focuses on heterogeneous traffic in OPS based networks. Using heterogeneous traffic and bufferless networks the enhanced convolution approach is a good solution. However, both methods (CA and ECA) present a high computational cost for high number of connections. Two new mechanisms (UMCA and ISCA) based on Monte Carlo method are proposed to overcome this drawback. Simulation results show that our proposals achieve lower computational cost compared to enhanced convolution approach with an small stochastic error in the probability estimation
Resumo:
This paper discusses predictive motion control of a MiRoSoT robot. The dynamic model of the robot is deduced by taking into account the whole process - robot, vision, control and transmission systems. Based on the obtained dynamic model, an integrated predictive control algorithm is proposed to position precisely with either stationary or moving obstacle avoidance. This objective is achieved automatically by introducing distant constraints into the open-loop optimization of control inputs. Simulation results demonstrate the feasibility of such control strategy for the deduced dynamic model