162 resultados para Mixed complementarity problem
Resumo:
We propose a classification and derive the associated normal forms for rational difference equations with complex coefficients. As an application, we study the global periodicity problem for second order rational difference equations with complex coefficients. We find new necessary conditions as well as some new examples of globally periodic equations.
Resumo:
Actualment, la resposta de la majoria d’instrumentació operacional i dels dosímetres personals utilitzats en radioprotecció per a la dosimetria neutrònica és altament dependent de l’energia dels espectres neutrònics a analitzar, especialment amb camps neutrònics amb una important component intermitja. En conseqüència, la interpretació de les lectures d’aquests aparells es complicada si no es té un coneixement previ de la distribució espectral de la fluència neutrònica en els punts d’interès. El Grup de Física de les Radiacions de la Universitat Autònoma de Barcelona (GFR-UAB) ha desenvolupat en els últims anys un espectròmetre de neutrons basat en un Sistema d’Esferes Bonner (BSS) amb un contador proporcional d’3He com a detector actiu. Els principals avantatges dels espectròmetres de neutrons per BSS són: la seva resposta isotròpica, la possibilitat de discriminar la component neutrònica de la gamma en camps mixtos, i la seva alta sensibilitat neutrònica als nivells de dosi analitzats. Amb aquestes característiques, els espectròmetres neutrònics per BSS compleixen amb els estándards de les últimes recomanacions de la ICRP i poden ser utilitzats també en el camp de la dosimetria neutrònica per a la mesura de dosis en el rang d’energia que va dels tèrmics fins als 20 MeV, en nou ordres de magnitud. En el marc de la col•laboració entre el GFR - UAB i el Laboratorio Nazionale di Frascati – Istituto Nazionale di Fisica Nucleare (LNF-INFN), ha tingut lloc una experiència comparativa d’espectrometria per BSS amb els feixos quasi monoenergètics de 2.5 MeV i 14 MeV del Fast Neutron Generator de l’ENEA. En l’exercici s’ha determinat l’espectre neutrònic a diferents distàncies del blanc de l’accelerador, aprofitant el codi FRUIT recentment desenvolupat pel grup LNF. Els resultats obtinguts mostren una bona coherència entre els dos espectròmetres i les dades mesurades i simulades.
Resumo:
We first recall the construction of the Chow motive modelling intersection cohomology of a proper surface X and study its fundamental properties. Using Voevodsky's category of effective geometrical motives, we then study the motive of the exceptional divisor D in a non-singular blow-up of X. If all geometric irreducible components of D are of genus zero, then Voevodsky's formalism allows us to construct certain one-extensions of Chow motives, as canonical subquotients of the motive with compact support of the smooth part of X. Specializing to Hilbert-Blumenthal surfaces, we recover a motivic interpretation of a recent construction of A. Caspar.
Resumo:
Counter automata are more powerful versions of finite state automata where addition and subtraction operations are permitted on a set of n integer registers, called counters. We show that the word problem of Zn is accepted by a nondeterministic m-counter automaton if and only if m &= n.
Resumo:
The Whitehead minimization problem consists in finding a minimum size element in the automorphic orbit of a word, a cyclic word or a finitely generated subgroup in a finite rank free group. We give the first fully polynomial algorithm to solve this problem, that is, an algorithm that is polynomial both in the length of the input word and in the rank of the free group. Earlier algorithms had an exponential dependency in the rank of the free group. It follows that the primitivity problem – to decide whether a word is an element of some basis of the free group – and the free factor problem can also be solved in polynomial time.
Resumo:
Conflict among member states regarding the distribution of net financial burdens has been allowed to contaminate the entire design of the EU budget with very negative consequences in terms of equity, efficiency and transparency. To get around this problem and pave the way for a substantive budget reform, we propose to decouple distributional negotiations from the rest of the budget process by linking member state net balances in a rigid manner to relative prosperity. This would be achieved through the introduction of a system of compensating horizontal transfers that would take to its logical conclusion the Commission's proposal for a generalized compensation mechanism. We discuss the impact of the proposed scheme on member states? incentives and illustrate its financial implications using revenue and expenditure projections for 2013 that are based on the current Financial Perspectives and Own Resources Decision.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Guba and Sapir asked, in their joint paper [8], if the simultaneous conjugacy problem was solvable in Diagram Groups or, at least, for Thompson's group F. We give an elementary proof for the solution of the latter question. This relies purely on the description of F as the group of piecewise linear orientation-preserving homeomorphisms of the unit. The techniques we develop allow us also to solve the ordinary conjugacy problem as well, and we can compute roots and centralizers. Moreover, these techniques can be generalized to solve the same questions in larger groups of piecewise-linear homeomorphisms.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We prove existence theorems for the Dirichlet problem for hypersurfaces of constant special Lagrangian curvature in Hadamard manifolds. The first results are obtained using the continuity method and approximation and then refined using two iterations of the Perron method. The a-priori estimates used in the continuity method are valid in any ambient manifold.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We establish existence and non-existence results to the Brezis-Nirenberg type problem involving the square root of the Laplacian in a bounded domain with zero Dirichlet boundary condition.
Resumo:
We construct a new family of semi-discrete numerical schemes for the approximation of the one-dimensional periodic Vlasov-Poisson system. The methods are based on the coupling of discontinuous Galerkin approximation to the Vlasov equation and several finite element (conforming, non-conforming and mixed) approximations for the Poisson problem. We show optimal error estimates for the all proposed methods in the case of smooth compactly supported initial data. The issue of energy conservation is also analyzed for some of the methods.
Resumo:
A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments are given to illustrate the numerical behavior of the algorithm.