112 resultados para Linear range
Resumo:
We describe the relation between two characterizations of conjugacy in groups of piecewise-linear homeomorphisms, discovered by Brin and Squier in [2] and Kassabov and Matucci in [5]. Thanks to the interplay between the techniques, we produce a simplified point of view of conjugacy that allows ua to easily recover centralizers and lends itself to generalization.
Resumo:
Guba and Sapir asked, in their joint paper [8], if the simultaneous conjugacy problem was solvable in Diagram Groups or, at least, for Thompson's group F. We give an elementary proof for the solution of the latter question. This relies purely on the description of F as the group of piecewise linear orientation-preserving homeomorphisms of the unit. The techniques we develop allow us also to solve the ordinary conjugacy problem as well, and we can compute roots and centralizers. Moreover, these techniques can be generalized to solve the same questions in larger groups of piecewise-linear homeomorphisms.
Resumo:
Based on third order linear sequences, an improvement version of the Diffie-Hellman distribution key scheme and the ElGamal public key cryptosystem scheme are proposed, together with an implementation and computational cost. The security relies on the difficulty of factoring an RSA integer and on the difficulty of computing the discrete logarithm.
Resumo:
For piecewise linear Lorenz map that expand on average, we show that it admits a dichotomy: it is either periodic renormalizable or prime. As a result, such a map is conjugate to a ß-transformation.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Near linear evolution in Korteweg de Vries (KdV) equation with periodic boundary conditions is established under the assumption of high frequency initial data. This result is obtained by the method of normal form reduction.
Resumo:
We prove existence theorems for the Dirichlet problem for hypersurfaces of constant special Lagrangian curvature in Hadamard manifolds. The first results are obtained using the continuity method and approximation and then refined using two iterations of the Perron method. The a-priori estimates used in the continuity method are valid in any ambient manifold.
Gaussian estimates for the density of the non-linear stochastic heat equation in any space dimension
Resumo:
In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the stochastic heat equation with multiplicative noise and in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise.
Resumo:
In economic literature, information deficiencies and computational complexities have traditionally been solved through the aggregation of agents and institutions. In inputoutput modelling, researchers have been interested in the aggregation problem since the beginning of 1950s. Extending the conventional input-output aggregation approach to the social accounting matrix (SAM) models may help to identify the effects caused by the information problems and data deficiencies that usually appear in the SAM framework. This paper develops the theory of aggregation and applies it to the social accounting matrix model of multipliers. First, we define the concept of linear aggregation in a SAM database context. Second, we define the aggregated partitioned matrices of multipliers which are characteristic of the SAM approach. Third, we extend the analysis to other related concepts, such as aggregation bias and consistency in aggregation. Finally, we provide an illustrative example that shows the effects of aggregating a social accounting matrix model.
Resumo:
The problem of finding a feasible solution to a linear inequality system arises in numerous contexts. In [12] an algorithm, called extended relaxation method, that solves the feasibility problem, has been proposed by the authors. Convergence of the algorithm has been proven. In this paper, we onsider a class of extended relaxation methods depending on a parameter and prove their convergence. Numerical experiments have been provided, as well.
Resumo:
We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed preconditioners and include numerical examples that validate the theory and assess the performance of the preconditioners.
Resumo:
This paper introduces local distance-based generalized linear models. These models extend (weighted) distance-based linear models firstly with the generalized linear model concept, then by localizing. Distances between individuals are the only predictor information needed to fit these models. Therefore they are applicable to mixed (qualitative and quantitative) explanatory variables or when the regressor is of functional type. Models can be fitted and analysed with the R package dbstats, which implements several distancebased prediction methods.
Resumo:
Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants
Resumo:
Aitchison and Bacon-Shone (1999) considered convex linear combinations ofcompositions. In other words, they investigated compositions of compositions, wherethe mixing composition follows a logistic Normal distribution (or a perturbationprocess) and the compositions being mixed follow a logistic Normal distribution. Inthis paper, I investigate the extension to situations where the mixing compositionvaries with a number of dimensions. Examples would be where the mixingproportions vary with time or distance or a combination of the two. Practicalsituations include a river where the mixing proportions vary along the river, or acrossa lake and possibly with a time trend. This is illustrated with a dataset similar to thatused in the Aitchison and Bacon-Shone paper, which looked at how pollution in aloch depended on the pollution in the three rivers that feed the loch. Here, I explicitlymodel the variation in the linear combination across the loch, assuming that the meanof the logistic Normal distribution depends on the river flows and relative distancefrom the source origins
Resumo:
The registration of full 3-D models is an important task in computer vision. Range finders only reconstruct a partial view of the object. Many authors have proposed several techniques to register 3D surfaces from multiple views in which there are basically two aspects to consider. First, poor registration in which some sort of correspondences are established. Second, accurate registration in order to obtain a better solution. A survey of the most common techniques is presented and includes experimental results of some of them