34 resultados para Limit-theorems
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We establish a one-to-one correspondence between the renormalizations and proper totally invariant closed sets (i.e., α-limit sets) of expanding Lorenz map, which enable us to distinguish periodic and non-periodic renormalizations. We describe the minimal renormalization by constructing the minimal totally invariant closed set, so that we can define the renormalization operator. Using consecutive renormalizations, we obtain complete topological characteriza- tion of α-limit sets and nonwandering set decomposition. For piecewise linear Lorenz map with slopes ≥ 1, we show that each renormalization is periodic and every proper α-limit set is countable.
Resumo:
"Vegeu el resum a l´inici del document del fitxer adjunt."
Resumo:
Using recent results on the behavior of multiple Wiener-Itô integrals based on Stein's method, we prove Hsu-Robbins and Spitzer's theorems for sequences of correlated random variables related to the increments of the fractional Brownian motion.
Resumo:
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [CDF2], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer ajunt."
Resumo:
For a quasilinear operator on the semiaxis a reduction theorem is proved on the cones of monotone functions in Lp - Lq setting for 0 < q < ∞, 1<= p < ∞. The case 0 < p < 1 is also studied for operators with additional properties. In particular, we obtain critera for three-weight inequalities for the Hardy-type operators with Oinarov' kernel on monotone functions in the case 0 < q < p <= 1.
Resumo:
All of the imputation techniques usually applied for replacing values below thedetection limit in compositional data sets have adverse effects on the variability. In thiswork we propose a modification of the EM algorithm that is applied using the additivelog-ratio transformation. This new strategy is applied to a compositional data set and theresults are compared with the usual imputation techniques
Resumo:
L'any 1994, Astala publicà el reconegut teorema de distorió de l'àrea per aplicacions quasiconformes, un resultat innovador que va permetre que n'apareguessin nombrosos més dins d'aquest camp de l'anàlisi durant la darrera dècada. Ens centrem en les conseqüències que té en la distorsió de la mesura de Hausdorff. Seguim la demostració de Lacey, Sawyer i Uriarte-Tuero per la distorsió del contingut de Hausdorff, clarificant-ne alguns punts i canviant l'enfocament per l'acotació de la transformada de Beurling, on prenem les idees d'Astala, Clop, Tolsa, Uriarte-Tuero i Verdera.
Resumo:
This paper analyzes the choice between limit and market orders in animperfectly competitive noisy rational expectations economy. There is a uniqueinsider, who takes into account the effect their trading has on prices. If theinsider behaves as a price taker, she will choose market orders if her privateinformation is very precise and she will choose limit orders otherwise. On thecontrary, if the insider recognizes and exploits her ability to affect themarket price, her optimal choice is to place limit orders whatever the precisionof her private information.