70 resultados para Heavy ion
Resumo:
We show that a heavy quark moving sufficiently fast through a quark-gluon plasma may lose energy by Cherenkov-radiating mesons. We demonstrate that this takes place in all strongly coupled, large-Nc plasmas with a gravity dual. The energy loss is exactly calculable in these models despite being an O(1/Nc)-effect. We discuss phenomenological implications for heavy-ion collision experiments.
Resumo:
The holographic isotropization of a highly anisotropic, homogeneous, strongly coupled, non-Abelian plasma was simplified in ref. [1] by linearizing Einstein"s equations around the final, equilibrium state. This approximation reproduces the expectation value of the boundary stress tensor with a 20% accuracy. Here we elaborate on these results and extend them to observables that are directly sensitive to the bulk interior, focusing for simplicity on the entropy production on the event horizon. We also consider next-to-leading-order corrections and show that the leading terms alone provide a better description of the isotropization process for the states that are furthest from equilibrium.
Resumo:
The aim of this paper is to find normative foundations of Approval Voting. In order to show that Approval Voting is the only social choice function that satisfies anonymity, neutrality, strategy-proofness and strict monotonicity we rely on an intermediate result which relates strategy-proofness of a social choice function to the properties of Independence of Irrelevant Alternatives and monotonicity of the corresponding social welfare function. Afterwards we characterize Approval Voting by means of strict symmetry, neutrality and strict monotonicity and relate this result to May's Theorem. Finally, we show that it is possible to substitute the property of strict monotonicity by the one efficiency of in the second characterization.
Resumo:
Luster is a metal glass nanocomposite layer first produced in the Middle East in early Islamic times ( 9th AD) made of metal copper or silver nanoparticles embedded in a silica-based glassy matrix. These nanoparticles are produced by ion exchange between Cu+ and Ag+ and alkaline ions from the glassy matrix and further growth in a reducing atmosphere. The most striking property of luster is its capability of reflecting light like a continuous metal layer and it was unexpectedly found to be linked to one single production parameter: the presence of lead in the glassy matrix composition. The purpose of this article is to describe the characteristics and differences of the nanoparticle layers developed on lead rich and lead free glasses. Copper luster layers obtained using the ancient recipes and methods are analyzed by means of elastic ion backscattering spectroscopy associated with other analytical techniques. The depth profile of the different elements is determined, showing that the luster layer formed in lead rich glasses is 5–6 times thinner and 3–4 times Cu richer. Therefore, the metal nanoparticles are more densely packed in the layer and this fact is related to its higher reflectivity. It is shown that lead influences the structure of the metal nanoparticle layer through the change of the precipitation kinetics
Resumo:
El presente estudio expone los resultados del tema desarrollado en la línea investigativa de culturas urbanas contemporáneas y procesos comunicacionales. Trabajo que describe (construye) el arquetipo del aficionado al heavy metal en España.
Resumo:
We establish the validity of subsampling confidence intervals for themean of a dependent series with heavy-tailed marginal distributions.Using point process theory, we study both linear and nonlinear GARCH-liketime series models. We propose a data-dependent method for the optimalblock size selection and investigate its performance by means of asimulation study.
Resumo:
We address the problem of scheduling a multiclass $M/M/m$ queue with Bernoulli feedback on $m$ parallel servers to minimize time-average linear holding costs. We analyze the performance of a heuristic priority-index rule, which extends Klimov's optimal solution to the single-server case: servers select preemptively customers with larger Klimov indices. We present closed-form suboptimality bounds (approximate optimality) for Klimov's rule, which imply that its suboptimality gap is uniformly bounded above with respect to (i) external arrival rates, as long as they stay within system capacity;and (ii) the number of servers. It follows that its relativesuboptimality gap vanishes in a heavy-traffic limit, as external arrival rates approach system capacity (heavy-traffic optimality). We obtain simpler expressions for the special no-feedback case, where the heuristic reduces to the classical $c \mu$ rule. Our analysis is based on comparing the expected cost of Klimov's ruleto the value of a strong linear programming (LP) relaxation of the system's region of achievable performance of mean queue lengths. In order to obtain this relaxation, we derive and exploit a new set ofwork decomposition laws for the parallel-server system. We further report on the results of a computational study on the quality of the $c \mu$ rule for parallel scheduling.
Resumo:
During the period 1996-2000, forty-three heavy rainfall events have been detected in the Internal Basins of Catalonia (Northeastern of Spain). Most of these events caused floods and serious damage. This high number leads to the need for a methodology to classify them, on the basis of their surface rainfall distribution, their internal organization and their physical features. The aim of this paper is to show a methodology to analyze systematically the convective structures responsible of those heavy rainfall events on the basis of the information supplied by the meteorological radar. The proposed methodology is as follows. Firstly, the rainfall intensity and the surface rainfall pattern are analyzed on the basis of the raingauge data. Secondly, the convective structures at the lowest level are identified and characterized by using a 2-D algorithm, and the convective cells are identified by using a 3-D procedure that looks for the reflectivity cores in every radar volume. Thirdly, the convective cells (3-D) are associated with the 2-D structures (convective rainfall areas). This methodology has been applied to the 43 heavy rainfall events using the meteorological radar located near Barcelona and the SAIH automatic raingauge network.
Resumo:
An experimental method of studying shifts between concentration-versus-depth profiles of vacancy- and interstitial-type defects in ion-implanted silicon is demonstrated. The concept is based on deep level transient spectroscopy measurements utilizing the filling pulse variation technique. The vacancy profile, represented by the vacancy¿oxygen center, and the interstitial profile, represented by the interstitial carbon¿substitutional carbon pair, are obtained at the same sample temperature by varying the duration of the filling pulse. The effect of the capture in the Debye tail has been extensively studied and taken into account. Thus, the two profiles can be recorded with a high relative depth resolution. Using low doses, point defects have been introduced in lightly doped float zone n-type silicon by implantation with 6.8 MeV boron ions and 680 keV and 1.3 MeV protons at room temperature. The effect of the angle of ion incidence has also been investigated. For all implantation conditions the peak of the interstitial profile is displaced towards larger depths compared to that of the vacancy profile. The amplitude of this displacement increases as the width of the initial point defect distribution increases. This behavior is explained by a simple model where the preferential forward momentum of recoiling silicon atoms and the highly efficient direct recombination of primary point defects are taken into account.
Resumo:
The microstructural and optical analysis of SiO2 layers emitting white luminescence is reported. These structures have been synthesized by sequential Si+ and C+ ion implantation and high-temperature annealing. Their white emission results from the presence of up to three bands in the photoluminescence (PL) spectra, covering the whole visible spectral range. The microstructural characterization reveals the presence of a complex multilayer structure: Si nanocrystals are only observed outside the main C-implanted peak region, with a lower density closer to the surface, being also smaller in size. This lack of uniformity in their density has been related to the inhibiting role of C in their growth dynamics. These nanocrystals are responsible for the band appearing in the red region of the PL spectrum. The analysis of the thermal evolution of the red PL band and its behavior after hydrogenation shows that carbon implantation also prevents the formation of well passivated Si/SiO2 interfaces. On the other hand, the PL bands appearing at higher energies show the existence of two different characteristics as a function of the implanted dose. For excess atomic concentrations below or equal to 10%, the spectra show a PL band in the blue region. At higher doses, two bands dominate the green¿blue spectral region. The evolution of these bands with the implanted dose and annealing time suggests that they are related to the formation of carbon-rich precipitates in the implanted region. Moreover, PL versus depth measurements provide a direct correlation of the green band with the carbon-implanted profile. These PL bands have been assigned to two distinct amorphous phases, with a composition close to elemental graphitic carbon or stoichiometric SiC.
Resumo:
The changes undergone by the Si surface after oxygen bombardment have special interest for acquiring a good understanding of the Si+-ion emission during secondary ion mass spectrometry (SIMS) analysis. For this reason a detailed investigation on the stoichiometry of the builtup surface oxides has been carried out using in situ x-ray photoemission spectroscopy (XPS). The XPS analysis of the Si 2p core level indicates a strong presence of suboxide chemical states when bombarding at angles of incidence larger than 30°. In this work a special emphasis on the analysis and interpretation of the valence band region was made. Since the surface stoichiometry or degree of oxidation varies with the angle of incidence, the respective valence band structures also differ. A comparison with experimentally measured and theoretically derived Si valence band and SiO2 valence band suggests that the new valence bands are formed by a combination of these two. This arises from the fact that Si¿Si bonds are present on the Si¿suboxide molecules, and therefore the corresponding 3p-3p Si-like subband, which extends towards the Si Fermi level, forms the top of the respective new valence bands. Small variations in intensity and energy position for this subband have drastic implications on the intensity of the Si+-ion emission during sputtering in SIMS measurements. A model combining chemically enhanced emission and resonant tunneling effects is suggested for the variations observed in ion emission during O+2 bombardment for Si targets.
Resumo:
A configurational model for silicon oxide damaged after a high-dose ion implantation of a nonreactive species is presented. Based on statistics of silicon-centered tetrahedra, the model takes into account not only the closest environment of a given silicon atom, but also the second neighborhood, so it is specified whether the oxygen attached to one given silicon is bridging two tetrahedra or not. The frequencies and intensities of infrared vibrational bands have been calculated by averaging over the distributions and these results are in agreement with the ones obtained from infrared experimental spectra. Likewise, the chemical shifts obtained from x-ray photoelectron spectroscopy (XPS) analysis are similar to the reported values for the charge-transfer model of SiOx compounds.