22 resultados para Groove Geometry
Resumo:
The repetitive DNA sequences found at telomeres and centromeres play a crucial role in the structure and function of eukaryotic chromosomes. This role may be related to the tendency observed in many repetitive DNAs to adopt non-canonical structures. Although there is an increasing recognition of the importance of DNA quadruplexes in chromosome biology, the co-existence of different quadruplex-forming elements in the same DNA structure is still a matter of debate. Here we report the structural study of the oligonucleotide d(TCGTTTCGT) and its cyclic analog d
Resumo:
Consider a Riemannian manifold equipped with an infinitesimal isometry. For this setup, a unified treatment is provided, solely in the language of Riemannian geometry, of techniques in reduction, linearization, and stability of relative equilibria. In particular, for mechanical control systems, an explicit characterization is given for the manner in which reduction by an infinitesimal isometry, and linearization along a controlled trajectory "commute." As part of the development, relationships are derived between the Jacobi equation of geodesic variation and concepts from reduction theory, such as the curvature of the mechanical connection and the effective potential. As an application of our techniques, fiber and base stability of relative equilibria are studied. The paper also serves as a tutorial of Riemannian geometric methods applicable in the intersection of mechanics and control theory.
Resumo:
We prove the Bogomolov conjecture for a totally degenerate abelian variety A over a function field. We adapt Zhang's proof of the number field case replacing the complex analytic tools by tropical analytic geometry. A key step is the tropical equidistribution theorem for A at the totally degenerate place.
Resumo:
Estudi elaborat a partir d’una estada a l’ Imperial College London, entre juliol i novembre de 2006. En aquest treball s’ha investigat la geometria més apropiada per a la caracterització de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. L’objectiu és assegurar la propagació de l’esquerda sense que la proveta falli abans per cap altre mecanisme de dany per tal de permetre la caracterització experimental de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. Amb aquesta fi, s’ha dut a terme l’anàlisi paramètrica de diferents tipus de provetes mitjançant el mètode dels elements finits (FE) combinat amb la virtual crack closure technique (VCCT). Les geometries de les provetes analitzades corresponen a la proveta de l’assaig compact tension (CT) i diferents variacions com la extended compact tension (ECT), la proveta widened compact tension (WCT), tapered compact tension (TCT) i doubly-tapered compact tension (2TCT). Com a resultat d’aquestes anàlisis s’han derivat diferents conclusions per obtenir la geometria de proveta més apropiada per a la caracterització de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. A més, també s’han dut a terme una sèrie d’assaigs experimentals per tal de validar els resultats de les anàlisis paramètriques. La concordança trobada entre els resultats numèrics i experimentals és bona tot i la presència d’efectes no previstos durant els assaigs experimentals.
Resumo:
Estudi elaborat a partir d’una estada a l'Imperial College of London, Gran Bretanya, entre setembre i desembre 2006. Disposar d'una geometria bona i ben definida és essencial per a poder resoldre eficientment molts dels models computacionals i poder obtenir uns resultats comparables a la realitat del problema. La reconstrucció d'imatges mèdiques permet transformar les imatges obtingudes amb tècniques de captació a geometries en formats de dades numèriques . En aquest text s'explica de forma qualitativa les diverses etapes que formen el procés de reconstrucció d'imatges mèdiques fins a finalment obtenir una malla triangular per a poder‐la processar en els algoritmes de càlcul. Aquest procés s'inicia a l'escàner MRI de The Royal Brompton Hospital de Londres del que s'obtenen imatges per a després poder‐les processar amb les eines CONGEN10 i SURFGEN per a un entorn MATLAB. Aquestes eines les han desenvolupat investigadors del Bioflow group del departament d'enginyeria aeronàutica del Imperial College of London i en l'ultim apartat del text es comenta un exemple d'una artèria que entra com a imatge mèdica i surt com a malla triangular processable amb qualsevol programari o algoritme que treballi amb malles.
Resumo:
Discriminating groups were introduced by G.Baumslag, A.Myasnikov and V.Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. However they have taken on a life of their own and have been an object of a considerable amount of study. In this paper we survey the large array results concerning the class of discriminating groups that have been developed over the past decade.
Resumo:
The classical Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative characterizations of this type of inequalities for nonsmooth lower semicontinuous functions defined on a metric or a real Hilbert space. In a metric context, we show that a generalized form of the Lojasiewicz inequality (hereby called the Kurdyka- Lojasiewicz inequality) relates to metric regularity and to the Lipschitz continuity of the sublevel mapping, yielding applications to discrete methods (strong convergence of the proximal algorithm). In a Hilbert setting we further establish that asymptotic properties of the semiflow generated by -∂f are strongly linked to this inequality. This is done by introducing the notion of a piecewise subgradient curve: such curves have uniformly bounded lengths if and only if the Kurdyka- Lojasiewicz inequality is satisfied. Further characterizations in terms of talweg lines -a concept linked to the location of the less steepest points at the level sets of f- and integrability conditions are given. In the convex case these results are significantly reinforced, allowing in particular to establish the asymptotic equivalence of discrete gradient methods and continuous gradient curves. On the other hand, a counterexample of a convex C2 function in R2 is constructed to illustrate the fact that, contrary to our intuition, and unless a specific growth condition is satisfied, convex functions may fail to fulfill the Kurdyka- Lojasiewicz inequality.