65 resultados para Flow Stability
Resumo:
In this article, we consider solutions starting close to some linearly stable invariant tori in an analytic Hamiltonian system and we prove results of stability for a super-exponentially long interval of time, under generic conditions. The proof combines classical Birkhoff normal forms and a new method to obtain generic Nekhoroshev estimates developed by the author and L. Niederman in another paper. We will mainly focus on the neighbourhood of elliptic fixed points, the other cases being completely similar.
Resumo:
We evaluate the performance of different optimization techniques developed in the context of optical flowcomputation with different variational models. In particular, based on truncated Newton methods (TN) that have been an effective approach for large-scale unconstrained optimization, we develop the use of efficient multilevel schemes for computing the optical flow. More precisely, we evaluate the performance of a standard unidirectional multilevel algorithm - called multiresolution optimization (MR/OPT), to a bidrectional multilevel algorithm - called full multigrid optimization (FMG/OPT). The FMG/OPT algorithm treats the coarse grid correction as an optimization search direction and eventually scales it using a line search. Experimental results on different image sequences using four models of optical flow computation show that the FMG/OPT algorithm outperforms both the TN and MR/OPT algorithms in terms of the computational work and the quality of the optical flow estimation.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The paper develops a stability theory for the optimal value and the optimal set mapping of optimization problems posed in a Banach space. The problems considered in this paper have an arbitrary number of inequality constraints involving lower semicontinuous (not necessarily convex) functions and one closed abstract constraint set. The considered perturbations lead to problems of the same type as the nominal one (with the same space of variables and the same number of constraints), where the abstract constraint set can also be perturbed. The spaces of functions involved in the problems (objective and constraints) are equipped with the metric of the uniform convergence on the bounded sets, meanwhile in the space of closed sets we consider, coherently, the Attouch-Wets topology. The paper examines, in a unified way, the lower and upper semicontinuity of the optimal value function, and the closedness, lower and upper semicontinuity (in the sense of Berge) of the optimal set mapping. This paper can be seen as a second part of the stability theory presented in [17], where we studied the stability of the feasible set mapping (completed here with the analysis of the Lipschitz-like property).
Resumo:
Joint-stability in interindustry models relates to the mutual simultaneous consistency of the demand-driven and supply-driven models of Leontief and Ghosh, respectively. Previous work has claimed joint-stability to be an acceptable assumption from the empirical viewpoint, provided only small changes in exogenous variables are considered. We show in this note, however, that the issue has deeper theoretical roots and offer an analytical demonstration that shows the impossibility of consistency between demand-driven and supply-driven models.
Resumo:
The Stability and Growth Pact (SGP) was established to govern discretionary fiscal policy in the European Monetary Union. This article studies the effects created when there is uncertainty about the members’ commitment to respecting the established deficit limits in the SGP. We will show that, even if countries respect the SGP deficit ceiling, the presence of uncertainty about their compliance will bring about higher volatility in key economic variables, which could, in turn, affect unemployment and growth negatively. This finding shows that it is important to reduce uncertainty about the members’ commitment towards the SGP. Keywords: fiscal policy rules, monetary union, Stability and Growth Pact, uncertainty, commitment. JEL No.: E63, F55, H62, H87
Resumo:
The work in this paper deals with the development of momentum and thermal boundary layers when a power law fluid flows over a flat plate. At the plate we impose either constant temperature, constant flux or a Newton cooling condition. The problem is analysed using similarity solutions, integral momentum and energy equations and an approximation technique which is a form of the Heat Balance Integral Method. The fluid properties are assumed to be independent of temperature, hence the momentum equation uncouples from the thermal problem. We first derive the similarity equations for the velocity and present exact solutions for the case where the power law index n = 2. The similarity solutions are used to validate the new approximation method. This new technique is then applied to the thermal boundary layer, where a similarity solution can only be obtained for the case n = 1.
Resumo:
Systematic asymptotic methods are used to formulate a model for the extensional flow of a thin sheet of nematic liquid crystal. With no external body forces applied, the model is found to be equivalent to the so-called Trouton model for Newtonian sheets (and fi bers), albeit with a modi fied "Trouton ratio". However, with a symmetry-breaking electric field gradient applied, behavior deviates from the Newtonian case, and the sheet can undergo fi nite-time breakup if a suitable destabilizing field is applied. Some simple exact solutions are presented to illustrate the results in certain idealized limits, as well as sample numerical results to the full model equations.
Resumo:
Gim & Kim (1998) proposed a generalization of Jeong (1982, 1984) reinterpretation of the Hawkins-Simon condition for macroeconomic stability to off-diagonal matrix elements. This generalization is conceptually relevant for it offers a complementary view of interindustry linkages beyond final or net output influence. The extension is completely similar to the 'total flow' idea introduced by Szyrmer (1992) or the 'output-to-output' multiplier of Miller & Blair (2009). However the practical implementation of Gim & Kim is actually faulty since it confuses the appropriate order of output normalization. We provide a new and elementary solution for the correct formalization using standard interindustry accounting concepts.
Resumo:
In standard multivariate statistical analysis common hypotheses of interest concern changes in mean vectors and subvectors. In compositional data analysis it is now well established that compositional change is most readily described in terms of the simplicial operation of perturbation and that subcompositions replace the marginal concept of subvectors. To motivate the statistical developments of this paper we present two challenging compositional problems from food production processes.Against this background the relevance of perturbations and subcompositions can beclearly seen. Moreover we can identify a number of hypotheses of interest involvingthe specification of particular perturbations or differences between perturbations and also hypotheses of subcompositional stability. We identify the two problems as being the counterpart of the analysis of paired comparison or split plot experiments and of separate sample comparative experiments in the jargon of standard multivariate analysis. We then develop appropriate estimation and testing procedures for a complete lattice of relevant compositional hypotheses
Resumo:
In this paper, robustness of parametric systems is analyzed using a new approach to interval mathematics called Modal Interval Analysis. Modal Intervals are an interval extension that, instead of classic intervals, recovers some of the properties required by a numerical system. Modal Interval Analysis not only simplifies the computation of interval functions but allows semantic interpretation of their results. Necessary, sufficient and, in some cases, necessary and sufficient conditions for robust performance are presented
Resumo:
Vegeu el resum a l'inici del document de l'arxiu adjunt
Resumo:
The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range dependent, and distributeddelay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs) and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method
Resumo:
Why does the EU have an ambiguous and inconsistent democracy promotion (DP) policy towards the Mediterranean countries? This paper argues that the EU´s DP is determined by a crucial conflict of interests conceptualised as a stability – democracy dilemma. The EU has been attempting to promote democracy, but without risking the current stability and in connivance with incumbent autocratic regimes. In view of this dilemma, the four main characteristics of the EU´s DP promotion are explored, namely: gradualism, a strong notion of partnership-building, a narrow definition of civil society, and a strong belief in economic liberalisation. A fifth feature, relation of the EU with moderate Islamists, is analysed in the paper as it represents the most striking illustration of its contradictions. The paper concludes by arguing that the definition of a clear DP by the EU that considered engagement with moderate Islamists would represent a major step towards squaring its stability – democracy circle.
Resumo:
In this paper, we give a new construction of resonant normal forms with a small remainder for near-integrable Hamiltonians at a quasi-periodic frequency. The construction is based on the special case of a periodic frequency, a Diophantine result concerning the approximation of a vector by independent periodic vectors and a technique of composition of periodic averaging. It enables us to deal with non-analytic Hamiltonians, and in this first part we will focus on Gevrey Hamiltonians and derive normal forms with an exponentially small remainder. This extends a result which was known for analytic Hamiltonians, and only in the periodic case for Gevrey Hamiltonians. As applications, we obtain an exponentially large upper bound on the stability time for the evolution of the action variables and an exponentially small upper bound on the splitting of invariant manifolds for hyperbolic tori, generalizing corresponding results for analytic Hamiltonians.