51 resultados para Correspondence analyses
Resumo:
We characterize the Walrasian allocations correspondence, in classesof exchange economies with smooth and convex preferences, by means of consistency requirements and other axioms. We present three characterizationresults; all of which require consistency, converse consistency and standard axioms. Two characterizations hold also on domains with a finite number ofpotential agents, one of them requires envy freeness (with respect to trades) and the other--core selection; a third characterization, that requires coreselection, applies only to a variable number of agents domain, but is validalso when the domain includes only a small variety of preferences.
Resumo:
Power transformations of positive data tables, prior to applying the correspondence analysis algorithm, are shown to open up a family of methods with direct connections to the analysis of log-ratios. Two variations of this idea are illustrated. The first approach is simply to power the original data and perform a correspondence analysis this method is shown to converge to unweighted log-ratio analysis as the power parameter tends to zero. The second approach is to apply the power transformation to thecontingency ratios, that is the values in the table relative to expected values based on the marginals this method converges to weighted log-ratio analysis, or the spectral map. Two applications are described: first, a matrix of population genetic data which is inherently two-dimensional, and second, a larger cross-tabulation with higher dimensionality, from a linguistic analysis of several books.
Resumo:
In order to interpret the biplot it is necessary to know which points usually variables are the ones that are important contributors to the solution, and this information is available separately as part of the biplot s numerical results. We propose a new scaling of the display, called the contribution biplot, which incorporates this diagnostic directly into the graphical display, showing visually the important contributors and thus facilitating the biplot interpretation and often simplifying the graphical representation considerably. The contribution biplot can be applied to a wide variety of analyses such as correspondence analysis, principal component analysis, log-ratio analysis and the graphical results of a discriminant analysis/MANOVA, in fact to any method based on the singular-value decomposition. In the contribution biplot one set of points, usually the rows of the data matrix, optimally represent the spatial positions of the cases or sample units, according to some distance measure that usually incorporates some form of standardization unless all data are comparable in scale. The other set of points, usually the columns, is represented by vectors that are related to their contributions to the low-dimensional solution. A fringe benefit is that usually only one common scale for row and column points is needed on the principal axes, thus avoiding the problem of enlarging or contracting the scale of one set of points to make the biplot legible. Furthermore, this version of the biplot also solves the problem in correspondence analysis of low-frequency categories that are located on the periphery of the map, giving the false impression that they are important, when they are in fact contributing minimally to the solution.
Resumo:
Perceptual maps have been used for decades by market researchers to illuminatethem about the similarity between brands in terms of a set of attributes, to position consumersrelative to brands in terms of their preferences, or to study how demographic and psychometricvariables relate to consumer choice. Invariably these maps are two-dimensional and static. Aswe enter the era of electronic publishing, the possibilities for dynamic graphics are opening up.We demonstrate the usefulness of introducing motion into perceptual maps through fourexamples. The first example shows how a perceptual map can be viewed in three dimensions,and the second one moves between two analyses of the data that were collected according todifferent protocols. In a third example we move from the best view of the data at the individuallevel to one which focuses on between-group differences in aggregated data. A final exampleconsiders the case when several demographic variables or market segments are available foreach respondent, showing an animation with increasingly detailed demographic comparisons.These examples of dynamic maps use several data sets from marketing and social scienceresearch.
Resumo:
Correspondence analysis has found extensive use in ecology, archeology, linguisticsand the social sciences as a method for visualizing the patterns of association in a table offrequencies or nonnegative ratio-scale data. Inherent to the method is the expression of the datain each row or each column relative to their respective totals, and it is these sets of relativevalues (called profiles) that are visualized. This relativization of the data makes perfect sensewhen the margins of the table represent samples from sub-populations of inherently differentsizes. But in some ecological applications sampling is performed on equal areas or equalvolumes so that the absolute levels of the observed occurrences may be of relevance, in whichcase relativization may not be required. In this paper we define the correspondence analysis ofthe raw unrelativized data and discuss its properties, comparing this new method to regularcorrespondence analysis and to a related variant of non-symmetric correspondence analysis.
Resumo:
The generalization of simple correspondence analysis, for two categorical variables, to multiple correspondence analysis where they may be three or more variables, is not straighforward, both from a mathematical and computational point of view. In this paper we detail the exact computational steps involved in performing a multiple correspondence analysis, including the special aspects of adjusting the principal inertias to correct the percentages of inertia, supplementary points and subset analysis. Furthermore, we give the algorithm for joint correspondence analysis where the cross-tabulations of all unique pairs of variables are analysed jointly. The code in the R language for every step of the computations is given, as well as the results of each computation.
Resumo:
In the analysis of multivariate categorical data, typically the analysis of questionnaire data, it is often advantageous, for substantive and technical reasons, to analyse a subset of response categories. In multiple correspondence analysis, where each category is coded as a column of an indicator matrix or row and column of Burt matrix, it is not correct to simply analyse the corresponding submatrix of data, since the whole geometric structure is different for the submatrix . A simple modification of the correspondence analysis algorithm allows the overall geometric structure of the complete data set to be retained while calculating the solution for the selected subset of points. This strategy is useful for analysing patterns of response amongst any subset of categories and relating these patterns to demographic factors, especially for studying patterns of particular responses such as missing and neutral responses. The methodology is illustrated using data from the International Social Survey Program on Family and Changing Gender Roles in 1994.
Resumo:
Correspondence analysis is introduced in the brand associationliterature as an alternative tool to measure dominance, for theparticular case of free choice data. The method is also used to analysedifferences, or asymmetries, between brand-attribute associations whereattributes are associated with evoked brands, and brand-attributeassociations where brands are associated with the attributes. Anapplication to a sample of deodorants is used to illustrate the proposedmethodology.
Resumo:
The generalization of simple (two-variable) correspondence analysis to more than two categorical variables, commonly referred to as multiple correspondence analysis, is neither obvious nor well-defined. We present two alternative ways of generalizing correspondence analysis, one based on the quantification of the variables and intercorrelation relationships, and the other based on the geometric ideas of simple correspondence analysis. We propose a version of multiple correspondence analysis, with adjusted principal inertias, as the method of choice for the geometric definition, since it contains simple correspondence analysis as an exact special case, which is not the situation of the standard generalizations. We also clarify the issue of supplementary point representation and the properties of joint correspondence analysis, a method that visualizes all two-way relationships between the variables. The methodology is illustrated using data on attitudes to science from the International Social Survey Program on Environment in 1993.
Resumo:
The case of two transition tables is considered, that is two squareasymmetric matrices of frequencies where the rows and columns of thematrices are the same objects observed at three different timepoints. Different ways of visualizing the tables, either separatelyor jointly, are examined. We generalize an existing idea where asquare matrix is descomposed into symmetric and skew-symmetric partsto two matrices, leading to a decomposition into four components: (1)average symmetric, (2) average skew-symmetric, (3) symmetricdifference from average, and (4) skew-symmetric difference fromaverage. The method is illustrated with an artificial example and anexample using real data from a study of changing values over threegenerations.
Resumo:
Dual scaling of a subjects-by-objects table of dominance data (preferences,paired comparisons and successive categories data) has been contrasted with correspondence analysis, as if the two techniques were somehow different. In this note we show that dual scaling of dominance data is equivalent to the correspondence analysis of a table which is doubled with respect to subjects. We also show that the results of both methods can be recovered from a principal components analysis of the undoubled dominance table which is centred with respect to subject means.
Resumo:
This paper presents findings from a study investigating a firm s ethical practices along the value chain. In so doing we attempt to better understand potential relationships between a firm s ethical stance with its customers and those of its suppliers within a supply chain and identify particular sectoral and cultural influences that might impinge on this. Drawing upon a database comprising of 667 industrial firms from 27 different countries, we found that ethical practices begin with the firm s relationship with its customers, the characteristics of which then influence the ethical stance with the firm s suppliers within the supply chain. Importantly, market structure along with some key cultural characteristics were also found to exert significant influence on the implementation of ethical policies in these firms.
Resumo:
Although correspondence analysis is now widely available in statistical software packages and applied in a variety of contexts, notably the social and environmental sciences, there are still some misconceptions about this method as well as unresolved issues which remain controversial to this day. In this paper we hope to settle these matters, namely (i) the way CA measures variance in a two-way table and how to compare variances between tables of different sizes, (ii) the influence, or rather lack of influence, of outliers in the usual CA maps, (iii) the scaling issue and the biplot interpretation of maps,(iv) whether or not to rotate a solution, and (v) statistical significance of results.
Resumo:
It is shown how correspondence analysis may be applied to a subset of response categories from a questionnaire survey, for example the subset of undecided responses or the subset of responses for a particular category. The idea is to maintain the original relative frequencies of the categories and not re-express them relative to totals within the subset, as would normally be done in a regular correspondence analysis of the subset. Furthermore, the masses and chi-square metric assigned to the data subset are the same as those in the correspondence analysis of the whole data set. This variant of the method, called Subset Correspondence Analysis, is illustrated on data from the ISSP survey on Family and Changing Gender Roles.
Resumo:
We show the equivalence between the use of correspondence analysis (CA)of concadenated tables and the application of a particular version ofconjoint analysis called categorical conjoint measurement (CCM). Theconnection is established using canonical correlation (CC). The second part introduces the interaction e¤ects in all three variants of theanalysis and shows how to pass between the results of each analysis.