92 resultados para Convolution Operators
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
For a quasilinear operator on the semiaxis a reduction theorem is proved on the cones of monotone functions in Lp - Lq setting for 0 < q < ∞, 1<= p < ∞. The case 0 < p < 1 is also studied for operators with additional properties. In particular, we obtain critera for three-weight inequalities for the Hardy-type operators with Oinarov' kernel on monotone functions in the case 0 < q < p <= 1.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
This article analyzes Folner sequences of projections for bounded linear operators and their relationship to the class of finite operators introduced by Williams in the 70ies. We prove that each essentially hyponormal operator has a proper Folner sequence (i.e. a Folner sequence of projections strongly converging to 1). In particular, any quasinormal, any subnormal, any hyponormal and any essentially normal operator has a proper Folner sequence. Moreover, we show that an operator is finite if and only if it has a proper Folner sequence or if it has a non-trivial finite dimensional reducing subspace. We also analyze the structure of operators which have no Folner sequence and give examples of them. For this analysis we introduce the notion of strongly non-Folner operators, which are far from finite block reducible operators, in some uniform sense, and show that this class coincides with the class of non-finite operators.
Resumo:
This paper focuses on one of the methods for bandwidth allocation in an ATM network: the convolution approach. The convolution approach permits an accurate study of the system load in statistical terms by accumulated calculations, since probabilistic results of the bandwidth allocation can be obtained. Nevertheless, the convolution approach has a high cost in terms of calculation and storage requirements. This aspect makes real-time calculations difficult, so many authors do not consider this approach. With the aim of reducing the cost we propose to use the multinomial distribution function: the enhanced convolution approach (ECA). This permits direct computation of the associated probabilities of the instantaneous bandwidth requirements and makes a simple deconvolution process possible. The ECA is used in connection acceptance control, and some results are presented
Resumo:
The authors focus on one of the methods for connection acceptance control (CAC) in an ATM network: the convolution approach. With the aim of reducing the cost in terms of calculation and storage requirements, they propose the use of the multinomial distribution function. This permits direct computation of the associated probabilities of the instantaneous bandwidth requirements. This in turn makes possible a simple deconvolution process. Moreover, under certain conditions additional improvements may be achieved
Resumo:
We study the induced aggregation operators. The analysis begins with a revision of some basic concepts such as the induced ordered weighted averaging (IOWA) operator and the induced ordered weighted geometric (IOWG) operator. We then analyze the problem of decision making with Dempster-Shafer theory of evidence. We suggest the use of induced aggregation operators in decision making with Dempster-Shafer theory. We focus on the aggregation step and examine some of its main properties, including the distinction between descending and ascending orders and different families of induced operators. Finally, we present an illustrative example in which the results obtained using different types of aggregation operators can be seen.
Resumo:
The study of the thermal behavior of complex packages as multichip modules (MCM¿s) is usually carried out by measuring the so-called thermal impedance response, that is: the transient temperature after a power step. From the analysis of this signal, the thermal frequency response can be estimated, and consequently, compact thermal models may be extracted. We present a method to obtain an estimate of the time constant distribution underlying the observed transient. The method is based on an iterative deconvolution that produces an approximation to the time constant spectrum while preserving a convenient convolution form. This method is applied to the obtained thermal response of a microstructure as analyzed by finite element method as well as to the measured thermal response of a transistor array integrated circuit (IC) in a SMD package.
Resumo:
We study the induced aggregation operators. The analysis begins with a revision of some basic concepts such as the induced ordered weighted averaging (IOWA) operator and the induced ordered weighted geometric (IOWG) operator. We then analyze the problem of decision making with Dempster-Shafer theory of evidence. We suggest the use of induced aggregation operators in decision making with Dempster-Shafer theory. We focus on the aggregation step and examine some of its main properties, including the distinction between descending and ascending orders and different families of induced operators. Finally, we present an illustrative example in which the results obtained using different types of aggregation operators can be seen.
Resumo:
The matching coefficients for the four-quark operators in NRQCD (NRQED) are calculated at one loop using dimensional regularization for ultraviolet and infrared divergences. The matching for the electromagnetic current follows easily from our results. Both the unequal and equal mass cases are considered. The role played by the Coulomb infrared singularities is explained in detail.
Resumo:
The renormalization properties of gauge-invariant composite operators that vanish when the classical equations of motion are used (class II^a operators) and which lead to diagrams where the Adler-Bell-Jackiw anomaly occurs are discussed. It is shown that gauge-invariant operators of this kind do need, in general, nonvanishing gauge-invariant (class I) counterterms.
Resumo:
[spa] Se presenta un nuevo modelo para la toma de decisiones basado en el uso de medidas de distancia y de operadores de agregación inducidos. Se introduce la distancia media ponderada ordenada inducida (IOWAD). Es un nuevo operador de agregación que extiende el operador OWA a través del uso de distancias y un proceso de reordenación de los argumentos basado en variables de ordenación inducidas. La principal ventaja el operador IOWAD es la posibilidad de utilizar una familia parametrizada de operadores de agregación entre la distancia individual máxima y la mínima. Se estudian algunas de sus principales propiedades y algunos casos particulares. Se desarrolla un ejemplo numérico en un problema de toma de decisiones sobre selección de inversiones. Se observa que la principal ventaja de este modelo en la toma de decisiones es la posibilidad de mostrar una visión más completa del proceso, de forma que el decisor está capacitado para seleccionar la alternativa que está más cerca de sus intereses.