102 resultados para Convex Duality
Resumo:
L. S. Shapley, in his paper 'Cores of Convex Games', introduces Convex Measure Games, those that are induced by a convex function on R, acting over a measure on the coalitions. But in a note he states that if this function is a function of several variables, then convexity for the function does not imply convexity of the game or even superadditivity. We prove that if the function is directionally convex, the game is convex, and conversely, any convex game can be induced by a directionally convex function acting over measures on the coalitions, with as many measures as players
Resumo:
We show that any cooperative TU game is the maximum of a finite collection of convex games. This max-convex decomposition can be refined by using convex games with non-negative dividends for all coalitions of at least two players. As a consequence of the above results we show that the class of modular games is a set of generators of the distributive lattice of all cooperative TU games. Finally, we characterize zero-monotonic games using a strong max-convex decomposition
Resumo:
We study under which conditions the core of a game involved in a convex decomposition of another game turns out to be a stable set of the decomposed game. Some applications and numerical examples, including the remarkable Lucas¿ five player game with a unique stable set different from the core, are reckoning and analyzed.
Resumo:
Let $\pi : \widetilde C \to C$ be an unramified double covering of irreducible smooth curves and let $P$ be the attached Prym variety. We prove the scheme-theoretic theta-dual equalities in the Prym variety $T(\widetilde C)=V^2$ and $T(V^2)=\widetilde C$, where $V^2$ is the Brill-Noether locus of $P$ associated to $\pi$ considered by Welters. As an application we prove a Torelli theorem analogous to the fact that the symmetric product $D^{(g)}$ of a curve $D$ of genus $g$ determines the curve.
Resumo:
We prove that any subanalytic locally Lipschitz function has the Sard property. Such functions are typically nonsmooth and their lack of regularity necessitates the choice of some generalized notion of gradient and of critical point. In our framework these notions are defined in terms of the Clarke and of the convex-stable subdifferentials. The main result of this note asserts that for any subanalytic locally Lipschitz function the set of its Clarke critical values is locally finite. The proof relies on Pawlucki's extension of the Puiseuxlemma. In the last section we give an example of a continuous subanalytic function which is not constant on a segment of "broadly critical" points, that is, points for which we can find arbitrarily short convex combinations of gradients at nearby points.
Resumo:
An algebraic decay rate is derived which bounds the time required for velocities to equilibrate in a spatially homogeneous flow-through model representing the continuum limit of a gas of particles interacting through slightly inelastic collisions. This rate is obtained by reformulating the dynamical problem as the gradient flow of a convex energy on an infinite-dimensional manifold. An abstract theory is developed for gradient flows in length spaces, which shows how degenerate convexity (or even non-convexity) | if uniformly controlled | will quantify contractivity (limit expansivity) of the flow.
Resumo:
In microeconomic analysis functions with diminishing returns to scale (DRS) have frequently been employed. Various properties of increasing quasiconcave aggregator functions with DRS are derived. Furthermore duality in the classical sense as well as of a new type is studied for such aggregator functions in production and consumer theory. In particular representation theorems for direct and indirect aggregator functions are obtained. These involve only small sets of generator functions. The study is carried out in the contemporary framework of abstract convexity and abstract concavity.
Resumo:
In this paper we study a class of cooperative sequencing games that arise from one-machine sequencing situations in which chain precedence relations are imposed on the jobs. It is shown that these sequencing games are convex.
Resumo:
We study markets where the characteristics or decisions of certain agents are relevant but not known to their trading partners. Assuming exclusive transactions, the environment is described as a continuum economy with indivisible commodities. We characterize incentive efficient allocations as solutions to linear programming problems and appeal to duality theory to demonstrate the generic existence of external effects in these markets. Because under certain conditions such effects may generate non-convexities, randomization emerges as a theoretic possibility. In characterizing market equilibria we show that, consistently with the personalized nature of transactions, prices are generally non-linear in the underlying consumption. On the other hand, external effects may have critical implications for market efficiency. With adverse selection, in fact, cross-subsidization across agents with different private information may be necessary for optimality, and so, the market need not even achieve an incentive efficient allocation. In contrast, for the case of a single commodity, we find that when informational asymmetries arise after the trading period (e.g. moral hazard; ex post hidden types) external effects are fully internalized at a market equilibrium.
Resumo:
We show that incentive efficient allocations in economies with adverse selection and moral hazard can be determined as optimal solutions to a linear programming problem and we use duality theory to obtain a complete characterization of the optima. Our dual analysis identifies welfare effects associated with the incentives of the agents to truthfully reveal their private information. Because these welfare effects may generate non-convexities, incentive efficient allocations may involve randomization. Other properties of incentive efficient allocations are also derived.
Resumo:
Let M be a compact hyperbolic 3-manifold with incompressible boundary. Consider a complete hyperbolic metric on int(M). To each geometrically finite end of int(M) are traditionnaly associated 3 different invariants : the hyperbolic metric associated to the conformal structure at infinity, the hyperbolic metric on the boundary of the convex core and the bending measured lamination of the convex core. In this note we show how invariants of different types can be realised in the different ends.
Resumo:
In this paper we define the formal and tempered Deligne cohomology groups, that are obtained by applying the Deligne complex functor to the complexes of formal differential forms and tempered currents respectively. We then prove the existence of a duality between them, a vanishing theorem for the former and a semipurity property for the latter. The motivation of this results comes from the study of covariant arithmetic Chow groups. The semi-purity property of tempered Deligne cohomology implies, in particular, that several definitions of covariant arithmetic Chow groups agree for projective arithmetic varieties.
Resumo:
It is often alleged that high auction prices inhibit service deployment. We investigate this claim under the extreme case of financially constrained bidders. If demand is just slightly elastic, auctions maximize consumer surplus if consumer surplus is a convex function of quantity (a common assumption), or if consumer surplus is concave and the proportion of expenditure spent on deployment is greater than one over the elasticity of demand. The latter condition appears to be true for most of the large telecom auctions in the US and Europe. Thus, even if high auction prices inhibit service deployment, auctions appear to be optimal from the consumers' point of view.
Resumo:
Les xarxes híbrides satèl·lit-terrestre ofereixen connectivitat a zones remotes i aïllades i permeten resoldre nombrosos problemes de comunicacions. No obstant, presenten diversos reptes, ja que realitzen la comunicació per un canal mòbil terrestre i un canal satèl·lit contigu. Un d'aquests reptes és trobar mecanismes per realitzar eficientment l'enrutament i el control de flux, de manera conjunta. L'objectiu d'aquest projecte és simular i estudiar algorismes existents que resolguin aquests problemes, així com proposar-ne de nous, mitjançant diverses tècniques d'optimització convexa. A partir de les simulacions realitzades en aquest estudi, s'han analitzat àmpliament els diversos problemes d'enrutament i control de flux, i s'han avaluat els resultats obtinguts i les prestacions dels algorismes emprats. En concret, s'han implementat de manera satisfactòria algorismes basats en el mètode de descomposició dual, el mètode de subgradient, el mètode de Newton i el mètode de la barrera logarítmica, entre d'altres, per tal de resoldre els problemes d'enrutament i control de flux plantejats.
Resumo:
The classical Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative characterizations of this type of inequalities for nonsmooth lower semicontinuous functions defined on a metric or a real Hilbert space. In a metric context, we show that a generalized form of the Lojasiewicz inequality (hereby called the Kurdyka- Lojasiewicz inequality) relates to metric regularity and to the Lipschitz continuity of the sublevel mapping, yielding applications to discrete methods (strong convergence of the proximal algorithm). In a Hilbert setting we further establish that asymptotic properties of the semiflow generated by -∂f are strongly linked to this inequality. This is done by introducing the notion of a piecewise subgradient curve: such curves have uniformly bounded lengths if and only if the Kurdyka- Lojasiewicz inequality is satisfied. Further characterizations in terms of talweg lines -a concept linked to the location of the less steepest points at the level sets of f- and integrability conditions are given. In the convex case these results are significantly reinforced, allowing in particular to establish the asymptotic equivalence of discrete gradient methods and continuous gradient curves. On the other hand, a counterexample of a convex C2 function in R2 is constructed to illustrate the fact that, contrary to our intuition, and unless a specific growth condition is satisfied, convex functions may fail to fulfill the Kurdyka- Lojasiewicz inequality.