Theta-duality on Prym varieties and a Torelli Theorem


Autoria(s): Lahoz Vilalta, Martí; Naranjo del Val, Juan Carlos
Contribuinte(s)

Universitat de Barcelona

Resumo

Let $\pi : \widetilde C \to C$ be an unramified double covering of irreducible smooth curves and let $P$ be the attached Prym variety. We prove the scheme-theoretic theta-dual equalities in the Prym variety $T(\widetilde C)=V^2$ and $T(V^2)=\widetilde C$, where $V^2$ is the Brill-Noether locus of $P$ associated to $\pi$ considered by Welters. As an application we prove a Torelli theorem analogous to the fact that the symmetric product $D^{(g)}$ of a curve $D$ of genus $g$ determines the curve.

Identificador

http://hdl.handle.net/2445/49710

Idioma(s)

eng

Publicador

American Mathematical Society (AMS)

Direitos

(c) American Mathematical Society (AMS), 2013

info:eu-repo/semantics/openAccess

Palavras-Chave #Varietats abelianes #Corbes #Geometria algebraica #Abelian varieties #Curves #Algebraic geometry
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion