Theta-duality on Prym varieties and a Torelli Theorem
Contribuinte(s) |
Universitat de Barcelona |
---|---|
Resumo |
Let $\pi : \widetilde C \to C$ be an unramified double covering of irreducible smooth curves and let $P$ be the attached Prym variety. We prove the scheme-theoretic theta-dual equalities in the Prym variety $T(\widetilde C)=V^2$ and $T(V^2)=\widetilde C$, where $V^2$ is the Brill-Noether locus of $P$ associated to $\pi$ considered by Welters. As an application we prove a Torelli theorem analogous to the fact that the symmetric product $D^{(g)}$ of a curve $D$ of genus $g$ determines the curve. |
Identificador | |
Idioma(s) |
eng |
Publicador |
American Mathematical Society (AMS) |
Direitos |
(c) American Mathematical Society (AMS), 2013 info:eu-repo/semantics/openAccess |
Palavras-Chave | #Varietats abelianes #Corbes #Geometria algebraica #Abelian varieties #Curves #Algebraic geometry |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |