75 resultados para Compact metric spaces
Resumo:
In this paper we study basic properties of the weighted Hardy space for the unit disc with the weight function satisfying Muckenhoupt's (Aq) condition, and study related approximation problems (expansion, moment and interpolation) with respect to two incomplete systems of holomorphic functions in this space.
Resumo:
Estudi elaborat a partir d’una estada a l’ Imperial College London, entre juliol i novembre de 2006. En aquest treball s’ha investigat la geometria més apropiada per a la caracterització de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. L’objectiu és assegurar la propagació de l’esquerda sense que la proveta falli abans per cap altre mecanisme de dany per tal de permetre la caracterització experimental de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. Amb aquesta fi, s’ha dut a terme l’anàlisi paramètrica de diferents tipus de provetes mitjançant el mètode dels elements finits (FE) combinat amb la virtual crack closure technique (VCCT). Les geometries de les provetes analitzades corresponen a la proveta de l’assaig compact tension (CT) i diferents variacions com la extended compact tension (ECT), la proveta widened compact tension (WCT), tapered compact tension (TCT) i doubly-tapered compact tension (2TCT). Com a resultat d’aquestes anàlisis s’han derivat diferents conclusions per obtenir la geometria de proveta més apropiada per a la caracterització de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. A més, també s’han dut a terme una sèrie d’assaigs experimentals per tal de validar els resultats de les anàlisis paramètriques. La concordança trobada entre els resultats numèrics i experimentals és bona tot i la presència d’efectes no previstos durant els assaigs experimentals.
Resumo:
In this paper we obtain necessary and sufficient conditions for double trigonometric series to belong to generalized Lorentz spaces, not symmetric in general. Estimates for the norms are given in terms of coefficients.
Resumo:
We study the existence theory for parabolic variational inequalities in weighted L2 spaces with respect to excessive measures associated with a transition semigroup. We characterize the value function of optimal stopping problems for finite and infinite dimensional diffusions as a generalized solution of such a variational inequality. The weighted L2 setting allows us to cover some singular cases, such as optimal stopping for stochastic equations with degenerate diffusion coeficient. As an application of the theory, we consider the pricing of American-style contingent claims. Among others, we treat the cases of assets with stochastic volatility and with path-dependent payoffs.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We show that H-spaces with finitely generated cohomology, as an algebra or as an algebra over the Steenrod algebra, have homotopy exponents at all primes. This provides a positive answer to a question of Stanley.
Resumo:
In this paper we introduce new functional spaces which we call the net spaces. Using their properties, the necessary and sufficient conditions for the integral operators to be of strong or weak-type are obtained. The estimates of the norm of the convolution operator in weighted Lebesgue spaces are presented.
Resumo:
In this paper we study boundedness of the convolution operator in different Lorentz spaces. In particular, we obtain the limit case of the Young-O'Neil inequality in the classical Lorentz spaces. We also investigate the convolution operator in the weighted Lorentz spaces. Finally, norm inequalities for the potential operator are presented.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We obtain upper and lower estimates of the (p; q) norm of the con-volution operator. The upper estimate sharpens the Young-type inequalities due to O'Neil and Stepanov.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The paper develops a stability theory for the optimal value and the optimal set mapping of optimization problems posed in a Banach space. The problems considered in this paper have an arbitrary number of inequality constraints involving lower semicontinuous (not necessarily convex) functions and one closed abstract constraint set. The considered perturbations lead to problems of the same type as the nominal one (with the same space of variables and the same number of constraints), where the abstract constraint set can also be perturbed. The spaces of functions involved in the problems (objective and constraints) are equipped with the metric of the uniform convergence on the bounded sets, meanwhile in the space of closed sets we consider, coherently, the Attouch-Wets topology. The paper examines, in a unified way, the lower and upper semicontinuity of the optimal value function, and the closedness, lower and upper semicontinuity (in the sense of Berge) of the optimal set mapping. This paper can be seen as a second part of the stability theory presented in [17], where we studied the stability of the feasible set mapping (completed here with the analysis of the Lipschitz-like property).
Resumo:
In this paper the scales of classes of stochastic processes are introduced. New interpolation theorems and boundedness of some transforms of stochastic processes are proved. Interpolation method for generously-monotonous rocesses is entered. Conditions and statements of interpolation theorems concern he xed stochastic process, which diers from the classical results.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."