35 resultados para CHEMICAL REACTIONS - Oxidation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermal energy storage (TES) can increase the thermal energy effieresa, of a process by reusing the waste heat from industrial process, solar energy or other sources. There are different ways to store thermal energy: by sensible heat, by latest heat, by sorption process or by chemical reaction. This thesrs provides a-state-of-the-art review of the experimental performance of TES systems based on solid gas sorption process and chemical reactions. The importance of theses processes is that provides a heat loss free storage system with a high energy density.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chemical reactions in living cells are under strict enzyme control and conform to a tightly regulated metabolic program. However, uncontrolled and potentially deleterious endogenous reactions occur, even under physiological conditions. Aging, in this chemical context, could be viewed as an entropic process, the result of chemical side reactions that chronically and cumulatively degrade the function of biological systems. Mitochondria are a main source of reactive oxygen species (ROS) and chemical sidereactions in healthy aerobic tissues and are the only known extranuclear cellular organelles in animal cells that contain their own DNA (mtDNA). ROS can modify mtDNA directly at the sugar-phosphate backbone or at the bases, producing many different oxidatively modified purines and pyrimidines, as well as single and double strand breaks and DNA mutations. In this scenario, natural selection tends to decrease the mitochondrial ROS generation, the oxidative damage to mtDNA, and the mitochondrial mutation rate in long-lived species, in agreement with the mitochondrial oxidative stress theory of aging.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution or in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continuous internal flow. In such conditions, the system can evolve, for certain reaction and system parameters, toward a chiral stationary state; that is, the system is able to reach a bifurcation point leading to SMSB. Numerical simulations in which reasonable chemical parameters have been used suggest that an adequate scenario for such a SMSB would be that of abyssal hydrothermal vents, by virtue of the typical temperature gradients found there and the role of inorganic solids mediating chemical reactions in an enzyme-like role.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The computer simulation of reaction dynamics has nowadays reached a remarkable degree of accuracy. Triatomic elementary reactions are rigorously studied with great detail on a straightforward basis using a considerable variety of Quantum Dynamics computational tools available to the scientific community. In our contribution we compare the performance of two quantum scattering codes in the computation of reaction cross sections of a triatomic benchmark reaction such as the gas phase reaction Ne + H2+ %12. NeH++ H. The computational codes are selected as representative of time-dependent (Real Wave Packet [ ]) and time-independent (ABC [ ]) methodologies. The main conclusion to be drawn from our study is that both strategies are, to a great extent, not competing but rather complementary. While time-dependent calculations advantages with respect to the energy range that can be covered in a single simulation, time-independent approaches offer much more detailed information from each single energy calculation. Further details such as the calculation of reactivity at very low collision energies or the computational effort related to account for the Coriolis couplings are analyzed in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An unprecedented NH2-directed Pd(II)-catalytic carbonylation of quaternary aromatic α -amino esters to yield 6-membered 10 benzolactams has been developed. The reaction shows a strong bias to 6-membered lactams over 5-membered ones. The steric hindrance around the amino group seems to be pivotal for the success of the process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The simultaneous etherification of isobutene and isoamylenes with ethanol has been studied using macroreticu-lar acid ion-exchange resins as catalyst. Most of the experiments were carried out over Amberlyst-35. In addition,Amberlyst-15 and Purolite CT-275 were also tested. Chemical equilibrium of four chemical reactions was studied:ethyl tert-butyl ether formation, tert-amyl ethyl ether formation from isoamylenes (2-methyl-1-butene and 2-methyl-2-butene) and isomerization reaction between both isoamylenes. Equilibrium data were obtained in a batchwisestirred tank reactor operated at 2.0 MPa and within the temperature range from 323 to 353 K. Experimental molarstandard enthalpy and entropy changes of reaction were determined for each reaction. From these data, the molarenthalpy change of formation of ethyl tert-butyl ether and tert-amyl ethyl ether were estimated. Besides, the chemical equilibrium between both diisobutene dimers, 2,4,4-trimethyl-1-pentene and 2,4,4-trimethyl-2-pentene, wasevaluated. A good agreement between thermodynamic results for the simultaneous etherification carried out in thiswork and those obtained for the isolated ethyl tert-butyl ether and tert-amyl ethyl ether systems was obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The encapsulation of metal clusters in endohedral metallofullerenes (EMFs) takes place in cages that in most cases are far from being the most stable isomer in the corresponding hollow fullerenes. There exist several possible explanations for the choice of the hosting cages in EMFs, although the final reasons are actually not totally well understood. Moreover, the reactivity and regioselectivity of (endohedral metallo)fullerenes have in the past decade been shown to be generally dependent on a number of factors, such as the size of the fullerene cage, the type of cluster that is being encapsulated, and the number of electrons that are transferred formally from the cluster to the fullerene cage. Different rationalizations of the observed trends had been proposed, based on bond lengths, pyramidalization angles, shape and energies of (un)occupied orbitals, deformation energies of the cages, or separation distances between the pentagon rings. Recently, in our group we proposed that the quest for the maximum aromaticity (maximum aromaticity criterion) determines the most suitable hosting carbon cage for a given metallic cluster (i.e. EMF stabilization), including those cases where the IPR rule is not fulfilled. Moreover, we suggested that local aromaticity plays a determining role in the reactivity of EMFs, which can be used as a criterion for understanding and predicting the regioselectivity of different reactions such as Diels-Alder cycloadditions or Bingel-Hirsch reactions. This review highlights different aspects of the aromaticity of fullerenes and EMFs, starting from how this can be measured and ending by how it can be used to rationalize and predict their molecular structure and reactivity

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel unsymmetric dinucleating ligand (LN3N4) combining a tridentate and a tetradentate binding sites linked through a m-xylyl spacer was synthesized as ligand scaffold for preparing homo- and dimetallic complexes, where the two metal ions are bound in two different coordination environments. Site-selective binding of different metal ions is demonstrated. LN3N4 is able to discriminate between CuI and a complementary metal (M′ = CuI, ZnII, FeII, CuII, or GaIII) so that pure heterodimetallic complexes with a general formula [CuIM′(LN3N4)]n+ are synthesized. Reaction of the dicopper(I) complex [CuI 2(LN3N4)]2+ with O2 leads to the formation of two different copper-dioxygen (Cu2O2) intermolecular species (O and TP) between two copper atoms located in the same site from different complex molecules. Taking advantage of this feature, reaction of the heterodimetallic complexes [CuM′(LN3N4)]n+ with O2 at low temperature is used as a tool to determine the final position of the CuI center in the system because only one of the two Cu2O2 species is formed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The preparation of [FeIV(O)(MePy2tacn)]2+ (2, MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane) by reaction of [FeII(MePy2tacn)(solvent)]2+ (1) and PhIO in CH3CN and its full characterization are described. This compound can also be prepared photochemically from its iron(II) precursor by irradiation at 447 nm in the presence of catalytic amounts of [Ru II(bpy)3]2+ as photosensitizer and a sacrificial electron acceptor (Na2S2O8). Remarkably, the rate of the reaction of the photochemically prepared compound 2 toward sulfides increases 150-fold under irradiation, and 2 is partially regenerated after the sulfide has been consumed; hence, the process can be repeated several times. The origin of this rate enhancement has been established by studying the reaction of chemically generated compound 2 with sulfides under different conditions, which demonstrated that both light and [Ru II(bpy)3]2+ are necessary for the observed increase in the reaction rate. A combination of nanosecond time-resolved absorption spectroscopy with laser pulse excitation and other mechanistic studies has led to the conclusion that an electron transfer mechanism is the most plausible explanation for the observed rate enhancement. According to this mechanism, the in-situ-generated [RuIII(bpy)3] 3+ oxidizes the sulfide to form the corresponding radical cation, which is eventually oxidized by 2 to the corresponding sulfoxide

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, glyoxalated alkaline lignins with a non-volatile and non-toxic aldehyde, which can be obtained from several natural resources, namely glyoxal, were prepared and characterized for its use in wood adhesives. The preparation method consisted of the reaction of lignin with glyoxal under an alkaline medium. The influence of reaction conditions such as the molar ratio of sodium hydroxide-to-lignin and reaction time were studied relative to the properties of the prepared adducts. The analytical techniques used were FTIR and 1H-NMR spectroscopies, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Results from both the FTIR and 1H-NMR spectroscopies showed that the amount of introduced aliphatic hydroxyl groups onto the lignin molecule increased with increasing reaction time and reached a maximum value at 10 h, and after they began to decrease. The molecular weights remained unchanged until 10 h of reaction time, and then started to increase, possibly due to the repolymerization reactions. DSC analysis showed that the glass transition temperature (Tg) decreased with the introduction of glyoxal onto the lignin molecule due to the increase in free volume of the lignin molecules. TGA analysis showed that the thermal stability of glyoxalated lignin is not influenced and remained suitable for wood adhesives. Compared to the original lignin, the improved lignin is reactive and a suitable raw material for adhesive formula

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The changes undergone by the Si surface after oxygen bombardment have special interest for acquiring a good understanding of the Si+-ion emission during secondary ion mass spectrometry (SIMS) analysis. For this reason a detailed investigation on the stoichiometry of the builtup surface oxides has been carried out using in situ x-ray photoemission spectroscopy (XPS). The XPS analysis of the Si 2p core level indicates a strong presence of suboxide chemical states when bombarding at angles of incidence larger than 30°. In this work a special emphasis on the analysis and interpretation of the valence band region was made. Since the surface stoichiometry or degree of oxidation varies with the angle of incidence, the respective valence band structures also differ. A comparison with experimentally measured and theoretically derived Si valence band and SiO2 valence band suggests that the new valence bands are formed by a combination of these two. This arises from the fact that Si¿Si bonds are present on the Si¿suboxide molecules, and therefore the corresponding 3p-3p Si-like subband, which extends towards the Si Fermi level, forms the top of the respective new valence bands. Small variations in intensity and energy position for this subband have drastic implications on the intensity of the Si+-ion emission during sputtering in SIMS measurements. A model combining chemically enhanced emission and resonant tunneling effects is suggested for the variations observed in ion emission during O+2 bombardment for Si targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interfacial hydrodynamic instabilities arise in a range of chemical systems. One mechanism for instability is the occurrence of unstable density gradients due to the accumulation of reaction products. In this paper we conduct two-dimensional nonlinear numerical simulations for a member of this class of system: the methylene-blue¿glucose reaction. The result of these reactions is the oxidation of glucose to a relatively, but marginally, dense product, gluconic acid, that accumulates at oxygen permeable interfaces, such as the surface open to the atmosphere. The reaction is catalyzed by methylene-blue. We show that simulations help to disassemble the mechanisms responsible for the onset of instability and evolution of patterns, and we demonstrate that some of the results are remarkably consistent with experiments. We probe the impact of the upper oxygen boundary condition, for fixed flux, fixed concentration, or mixed boundary conditions, and find significant qualitative differences in solution behavior; structures either attract or repel one another depending on the boundary condition imposed. We suggest that measurement of the form of the boundary condition is possible via observation of oxygen penetration, and improved product yields may be obtained via proper control of boundary conditions in an engineering setting. We also investigate the dependence on parameters such as the Rayleigh number and depth. Finally, we find that pseudo-steady linear and weakly nonlinear techniques described elsewhere are useful tools for predicting the behavior of instabilities beyond their formal range of validity, as good agreement is obtained with the simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidation of amorphous silicon (a-Si) nanoparticles grown by plasma-enhanced chemical vapor deposition were investigated. Their hydrogen content has a great influence on the oxidation rate at low temperature. When the mass gain is recorded during a heating ramp in dry air, an oxidation process at low temperature is identified with an onset around 250°C. This temperature onset is similar to that of hydrogen desorption. It is shown that the oxygen uptake during this process almost equals the number of hydrogen atoms present in the nanoparticles. To explain this correlation, we propose that oxidation at low temperature is triggered by the process of hydrogen desorption

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple, efficient protocol for the preparation of α-labeled aldehydes based on H/D exchange catalyzed by 4-(N,N-dimethylamino)pyridine or Et3N is described. High chemical yields and ratios of isotope incorporation were obtained even when small amounts (1 mmol) of aldehyde were used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple, efficient protocol for the preparation of α-labeled aldehydes based on H/D exchange catalyzed by 4-(N,N-dimethylamino)pyridine or Et3N is described. High chemical yields and ratios of isotope incorporation were obtained even when small amounts (1 mmol) of aldehyde were used.