197 resultados para Algorismes paral·lels
Resumo:
Creació d’un sistema format per un algoritme genètic que permeti dissenyar de forma automática, les dades dels valors lingüístics d’un controlador fuzzy, per a un robot amb tracció diferencial. Les dades que s’han d’obtenir han de donar-li al robot, la capacitat d’arribar a un destí, evitant els obstacles que vagi trobant al llarg del camí
Resumo:
This paper describes Question Waves, an algorithm that can be applied to social search protocols, such as Asknext or Sixearch. In this model, the queries are propagated through the social network, with faster propagation through more trustable acquaintances. Question Waves uses local information to make decisions and obtain an answer ranking. With Question Waves, the answers that arrive first are the most likely to be relevant, and we computed the correlation of answer relevance with the order of arrival to demonstrate this result. We obtained correlations equivalent to the heuristics that use global knowledge, such as profile similarity among users or the expertise value of an agent. Because Question Waves is compatible with the social search protocol Asknext, it is possible to stop a search when enough relevant answers have been found; additionally, stopping the search early only introduces a minimal risk of not obtaining the best possible answer. Furthermore, Question Waves does not require a re-ranking algorithm because the results arrive sorted
Resumo:
Aquest treball és una investigació de com cal ensenyar la multiplicació de fraccions a l’Educació Primària. S’han recollit les dades a través d’entrevistes per conèixer com 6 mestres ensenyaven aquest coneixement matemàtic per comparar-ho amb el que diuen diferents autors com Van de Walle, Tipps, Tucker i Bruner. L’ensenyamentaprenentatge de la multiplicació de fraccions és un procés difícil i complex. Per adquirir aquest coneixement, els infants necessiten tenir experiències amb diferents situacions que es plantegi el producte de fraccions i deduir ells mateixos estratègies i algorismes propis per resoldre-les. Si se’ls dóna directament l’algorisme tradicional sense comprensió, tindran dificultats per identificar si el resultat és coherent o no.
Resumo:
The extensional theory of arrays is one of the most important ones for applications of SAT Modulo Theories (SMT) to hardware and software verification. Here we present a new T-solver for arrays in the context of the DPLL(T) approach to SMT. The main characteristics of our solver are: (i) no translation of writes into reads is needed, (ii) there is no axiom instantiation, and (iii) the T-solver interacts with the Boolean engine by asking to split on equality literals between indices. As far as we know, this is the first accurate description of an array solver integrated in a state-of-the-art SMT solver and, unlike most state-of-the-art solvers, it is not based on a lazy instantiation of the array axioms. Moreover, it is very competitive in practice, specially on problems that require heavy reasoning on array literals
Resumo:
El problema de la regresión simbólica consiste en el aprendizaje, a partir de un conjunto muestra de datos obtenidos experimentalmente, de una función desconocida. Los métodos evolutivos han demostrado su eficiencia en la resolución de instancias de dicho problema. En este proyecto se propone una nueva estrategia evolutiva, a través de algoritmos genéticos, basada en una nueva estructura de datos denominada Straight Line Program (SLP) y que representa en este caso expresiones simbólicas. A partir de un SLP universal, que depende de una serie de parámetros cuya especialización proporciona SLP's concretos del espacio de búsqueda, la estrategia trata de encontrar los parámetros óptimos para que el SLP universal represente la función que mejor se aproxime al conjunto de puntos muestra. De manera conceptual, este proyecto consiste en un entrenamiento genético del SLP universal, utilizando los puntos muestra como conjunto de entrenamiento, para resolver el problema de la regresión simbólica.
Resumo:
A technique for simultaneous localisation and mapping (SLAM) for large scale scenarios is presented. This solution is based on the use of independent submaps of a limited size to map large areas. In addition, a global stochastic map, containing the links between adjacent submaps, is built. The information in both levels is corrected every time a loop is closed: local maps are updated with the information from overlapping maps, and the global stochastic map is optimised by means of constrained minimisation
Resumo:
Image segmentation of natural scenes constitutes a major problem in machine vision. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. This approach begins by detecting the main contours of the scene which are later used to guide a concurrent set of growing processes. A previous analysis of the seed pixels permits adjustment of the homogeneity criterion to the region's characteristics during the growing process. Since the high variability of regions representing outdoor scenes makes the classical homogeneity criteria useless, a new homogeneity criterion based on clustering analysis and convex hull construction is proposed. Experimental results have proven the reliability of the proposed approach
Resumo:
El càncer de mama és una de les causes de més mortalitat entreles dones dels països desenvolupats. És tractat d'una maneramés eficient quan es fa una detecció precoç, on les tècniques d'imatge són molt importants. Una de les tècniques d'imatge més utilitzades després dels raigs-X són els ultrasons. A l'hora de fer un processat d'imatges d'ultrasò, els experts en aquest camp es troben amb una sèrie de limitacions en el moment d'utilitzar uns filtrats per les imatges, quan es fa ús de determinades eines. Una d'aquestes limitacions consisteix en la falta d'interactivitat que aquestes ens ofereixen. Per tal de solventar aquestes limitacions, s'ha desenvolupat una eina interactiva que permet explorar el mapa de paràmetres visualitzant el resultat del filtrat en temps real, d'una manera dinàmica i intuïtiva. Aquesta eina s'ha desenvolupat dins l'entorn de visualització d'imatge mèdica MeVisLab. El MeVisLab és un entorn molt potent i modular pel desenvolupament d'algorismes de processat d'imatges, visualització i mètodes d'interacció, especialment enfocats a la imatge mèdica. A més del processament bàsic d'imatges i de mòduls de visualització, inclou algorismes avançats de segmentació, registre i moltes análisis morfològiques i funcionals de les imatges.S'ha dut a terme un experiment amb quatre experts que, utilitzantl'eina desenvolupada, han escollit els paràmetres que creien adientsper al filtrat d'una sèrie d'imatges d'ultrasò. En aquest experiments'han utilitzat uns filtres que l'entorn MeVisLab ja té implementats:el Bilateral Filter, l'Anisotropic Difusion i una combinació d'un filtrede Mediana i un de Mitjana.Amb l'experiment realitzat, s'ha fet un estudi dels paràmetres capturats i s'han proposat una sèrie d'estimadors que seran favorables en la majoria dels casos per dur a terme el preprocessat d'imatges d'ultrasò
Resumo:
We report a Lattice-Boltzmann scheme that accounts for adsorption and desorption in the calculation of mesoscale dynamical properties of tracers in media of arbitrary complexity. Lattice Boltzmann simulations made it possible to solve numerically the coupled Navier-Stokes equations of fluid dynamics and Nernst-Planck equations of electrokinetics in complex, heterogeneous media. With the moment propagation scheme, it became possible to extract the effective diffusion and dispersion coefficients of tracers, or solutes, of any charge, e.g., in porous media. Nevertheless, the dynamical properties of tracers depend on the tracer-surface affinity, which is not purely electrostatic and also includes a species-specific contribution. In order to capture this important feature, we introduce specific adsorption and desorption processes in a lattice Boltzmann scheme through a modified moment propagation algorithm, in which tracers may adsorb and desorb from surfaces through kinetic reaction rates. The method is validated on exact results for pure diffusion and diffusion-advection in Poiseuille flows in a simple geometry. We finally illustrate the importance of taking such processes into account in the time-dependent diffusion coefficient in a more complex porous medium.
Resumo:
This study makes an attempt to capture some of the aesthetic ideas prospering in the latter half of the eighteenth century and investigates in what way these are possibly being manifested in different musical aspects in Beethoven's early work, and most specifically in his eight sonata, often referred to as the Pathétique sonata. Beginning the first chapter with an introduction to aesthetic notions in Beethoven's age, the second chapter is mostly concerned with anecdotes regarding the Pathétique sonata. Further the third chapter exhibits possible influences between Cherubini, Beethoven and Wagner, and the last three chapters treat different musical and aesthetic aspects like Beethoven's relation to the C minor tonality, the German Sturm und Drang movement, and finally some parallels that can be found between literature and music.
Resumo:
Aquest projecte tracta la implementació d’una aplicació capaç de simular el comportament d’uns individus que segueixen el seu propi algorisme en un entorn que planteja certes dificultat per a la supervivència: hi ha obstacles i fonts que proveeixen energia que els individus necessiten per existir. S’han desenvolupat les eines necessàries perquè l’usuari pugui visualitzar, recollir dades i interactuar amb l’entorn d’una forma còmoda i intuïtiva. Sobre aquesta base, s’ha implementat un videojoc que planteja reptes a l’usuari que es poden resoldre a través de l’edició dels algorismes d’un o més individus, és a dir, a través de la programació. D’aquesta manera s’introdueix a l’usuari en els principis de l’algorismia d’una forma lúdica i molt visual.
Resumo:
We adapt the Shout and Act algorithm to Digital Objects Preservation where agents explore file systems looking for digital objects to be preserved (victims). When they find something they “shout” so that agent mates can hear it. The louder the shout, the urgent or most important the finding is. Louder shouts can also refer to closeness. We perform several experiments to show that this system works very scalably, showing that heterogeneous teams of agents outperform homogeneous ones over a wide range of tasks complexity. The target at-risk documents are MS Office documents (including an RTF file) with Excel content or in Excel format. Thus, an interesting conclusion from the experiments is that fewer heterogeneous (varying skills) agents can equal the performance of many homogeneous (combined super-skilled) agents, implying significant performance increases with lower overall cost growth. Our results impact the design of Digital Objects Preservation teams: a properly designed combination of heterogeneous teams is cheaper and more scalable when confronted with uncertain maps of digital objects that need to be preserved. A cost pyramid is proposed for engineers to use for modeling the most effective agent combinations
Resumo:
In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms
Resumo:
In this paper, we present view-dependent information theory quality measures for pixel sampling and scene discretization in flatland. The measures are based on a definition for the mutual information of a line, and have a purely geometrical basis. Several algorithms exploiting them are presented and compare well with an existing one based on depth differences
Resumo:
In this paper we address the problem of extracting representative point samples from polygonal models. The goal of such a sampling algorithm is to find points that are evenly distributed. We propose star-discrepancy as a measure for sampling quality and propose new sampling methods based on global line distributions. We investigate several line generation algorithms including an efficient hardware-based sampling method. Our method contributes to the area of point-based graphics by extracting points that are more evenly distributed than by sampling with current algorithms