256 resultados para Grimson, Alejandro


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructure of CuInS2-(CIS2) polycrystalline films deposited onto Mo-coated glass has been analyzed by Raman scattering, Auger electron spectroscopy (AES), transmission electron microscopy, and x-ray diffraction techniques. Samples were obtained by a coevaporation procedure that allows different Cu-to-In composition ratios (from Cu-rich to Cu-poor films). Films were grown at different temperatures between 370 and 520-°C. The combination of micro-Raman and AES techniques onto Ar+-sputtered samples has allowed us to identify the main secondary phases from Cu-poor films such as CuIn5S8 (at the central region of the layer) and MoS2 (at the CIS2/Mo interface). For Cu-rich films, secondary phases are CuS at the surface of as-grown layers and MoS2 at the CIS2/Mo interface. The lower intensity of the MoS2 modes from the Raman spectra measured at these samples suggests excess Cu to inhibit MoS2 interface formation. Decreasing the temperature of deposition to 420-°C leads to an inhibition in observing these secondary phases. This inhibition is also accompanied by a significant broadening and blueshift of the main A1 Raman mode from CIS2, as well as by an increase in the contribution of an additional mode at about 305 cm-1. The experimental data suggest that these effects are related to a decrease in structural quality of the CIS2 films obtained under low-temperature deposition conditions, which are likely connected to the inhibition in the measured spectra of secondary-phase vibrational modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el presente trabajo se estudian los efectos introducidos por la implantación de Nitrógeno atómico y Silicio sobre probetas de policarbonato empleadas para usos ópticos. Distintas dosis de Nitrógeno y Silicio fueron implantadas de cara a poner de manifiesto el efecto de la dosis sobre las propiedades ópticas y mecánicas. Se llevaron a cabo ensayos mecánicos de microdureza, nanodureza, y AFM, así como ensayos ópticos de Reflexión-absorción IR y Transmitancia UV-VIS. Los resultados muestran un endurecimiento superficial para las implantaciones a dosis altas de Nitrógeno, así como cambios considerables en los espectros de transmitancia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este artículo se estudia la síntesis de nanocristales semiconductores elementales y compuestos elaborados por implantación iónica en SiO2. En el caso de los nanocristales de Si, se ha desarrollado un estudio sistemático que correlaciona las características de los precipitados y sus propiedades de luminiscencia. Nanopartículas de Ge, que presentan menor emisión pero mayor contraste en Microscopía Electrónica de Transmisión, han sido fabricadas para desarrollar un nuevo método de medida de la densidad de nanocristales en matrices amorfas. Por otro lado, nanopartículas de ZnS dopadas con Mn han sido elaboradas por primera vez con esta técnica, observando la emisión de un pico de luminescencia característico de una transición intra-Mn. Finalmente, se presentan los primeros resultados ópticos de capas coimplantadas con Si+ y C+, que muestran la presencia de tres picos intensos de luminescencia en las regiones roja, verde y azul del espectro visible, que ha sido relacionada con la presencia de diferentes tipos de nanopartículas. Cabe destacar que la emisión simultánea de los tres picos ha permitido la observación de una intensa emisión de luz blanca.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se presenta un estudio detallado de los procesos implicados en la sulfurización de capas metálicas de Cu-In para la fabricación de células solares de CuInS2. Con este objeto, se ha desarrollado un experimento de sulfurización parcial de las capas, que han sido sometidas posteriormente a un tratamiento de selenización. El estudio de estas estructuras mediante Espectroscopía Raman y Espectroscopía de Electrones Auger (AES) ha permitido conocer algunos de los detalles de la reacción química, en concreto la identificación del frente de crecimiento de la reacción de sulfurización. Paralelamente, se ha desarrollado un sistema experimental que ha hecho posible investigar in-situ la reacción de sulfurización por Espectroscopía Raman, lo cual ha permitido un seguimiento preciso de la evolución estructural del material durante el proceso. Los resultados experimentales demuestran que la reacción de sulfurización se inicia en la superficie de la capa, dando lugar a la formación de CuInS2, coexistiendo dos estructuras cristalinas polimórficas (calcopirita y orden catiónico CuAu). Posteriormente la reacción química continúa asistida por la difusión de los metales hacia la superficie, que reaccionan con la atmósfera de azufre, de forma simultánea se produce una transformación de la fase CuAu del compuesto en la estructura calcopirita.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed analysis of the photocapacitance signal at the near‐band and extrinsic energetic ranges in Schottky barriers obtained on horizontal Bridgman GaAs wafers, which were implanted with boron at different doses and annealed at several temperatures, has been carried out by using the optical isothermal transient spectroscopy, OITS. The optical cross sections have been determined as well as the quenching efficiency of the EL2 level which has been found to be independent of the annealing temperature. Moreover, the quenching relaxation presents two significant features: (i) a strong increase of the quenching efficiency from 1.35 eV on and (ii) a diminution of the quenching transient amplitude in relation with that shown by the fundamental EL2 level. In order to explain this behavior, different cases are discussed assuming the presence of several energy levels, the existence of an optical recuperation, or the association of the EL2 trap with two levels located, respectively, at Ev+0.45 eV and Ec−0.75 eV. The theoretical simulation, taking into account these two last cases, is in agreement with the experimental photocapacitance data at low temperature, as well as at room temperature where the EL2 filling phototransient shows an anomalous behavior. Moreover, unlike the previous data reported for the EL2 electron optical cross section, the values found using our experimental technique are in agreement with the behavior deduced from the theoretical calculation. The utilization of the OITS method has also allowed the determination of another level, whose faster optical contribution is often added to that of the EL2 level when the DLOS or standard photocapacitance is used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, an analysis of the dark and optical capacitance transients obtained from Schottky Au:GaAs barriers implanted with boron has been carried out by means of the isothermal transient spectroscopy (ITS) and differential and optical ITS techniques. Unlike deep level transient spectroscopy, the use of these techniques allows one to easily distinguish contributions to the transients different from those of the usual deep trap emission kinetics. The results obtained show the artificial creation of the EL2, EL6, and EL5 defects by the boron implantation process. Moreover, the interaction mechanism between the EL2 and other defects, which gives rise to the U band, has been analyzed. The existence of a reorganization process of the defects involved has been observed, which prevents the interaction as the temperature increases. The activation energy of this process has been found to be dependent on the temperature of the annealing treatment after implantation, with values of 0.51 and 0.26 eV for the as‐implanted and 400 °C annealed samples, respectively. The analysis of the optical data has corroborated the existence of such interactions involving all the observed defects that affect their optical parameters

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis of silicon on insulator structures obtained by single and multiple implants by means of Raman scattering and photoluminescence spectroscopy is reported. The Raman spectra obtained with different excitation powers and wavelengths indicate the presence of a tensile strain in the top silicon layer of the structures. The comparison between the spectra measured in both kinds of samples points out the existence in the multiple implant material of a lower strain for a penetration depth about 300 nm and a higher strain for higher penetration depths. These results have been correlated with transmission electron microscopy observations, which have allowed to associate the higher strain to the presence of SiO2 precipitates in the top silicon layer, close to the buried oxide. The found lower strain is in agreement with the better quality expected for this material, which is corroborated by the photoluminescence data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inductive-based devices integrated with Si technology for biodetection applications are characterized, using simple resonant differential filter configurations. This has allowed the corroboration of the viability of the proposed circuits, which are characterized by their very high simplicity, for microinductive signal conditioning in high-sensitivity sensor devices. The simulation of these simple circuits predicts sensitivities of the differential output voltage which can achieve values in the range of 0.1-1 V/nH, depending on the coil parameters. These very high-sensitivity values open the possibility for the experimental detection of extremely small inductance changes in the devices. For real microinductive devices, both series resistance and parasitic capacitive components contribute to the decrease of the differential circuit sensitivity. Nevertheless, measurements performed using micro-coils fabricated with relatively high series resistance and coupling parasitic effects have allowed detection of changes in the range of 2 nH. which are compatible with biodetection applications with estimated detection limits below the picomolarity range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A microstructural analysis of silicon-on-insulator samples obtained by high dose oxygen ion implantation was performed by Raman scattering. The samples analyzed were obtained under different conditions thus leading to different concentrations of defects in the top Si layer. The samples were implanted with the surface covered with SiO2 capping layers of different thicknesses. The spectra measured from the as-implanted samples were fitted to a correlation length model taking into account the possible presence of stress effects in the spectra. This allowed quantification of both disorder effects, which are determined by structural defects, and residual stress in the top Si layer before annealing. These data were correlated to the density of dislocations remaining in the layer after annealing. The analysis performed corroborates the existence of two mechanisms that generate defects in the top Si layer that are related to surface conditions during implantation and the proximity of the top Si/buried oxide layer interface to the surface before annealing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline silicon layers have been obtained by thermal annealing of films sputtered in various hydrogen partial pressures. The as-deposited and crystallized films were investigated by infrared, Raman, x-ray diffraction, electron microscopy, and optical absorption techniques. The obtained data show evidence of a close correlation between the microstructure and properties of the processed material, and the hydrogen content in the as-grown deposit. The minimum stress deduced from Raman was found to correspond to the widest band gap and to a maximum hydrogen content in the basic unannealed sample. Such a structure relaxation seems to originate from the so-called "chemical annealing" thought to be due to Si-H2 species, as identified by infrared spectroscopy. The variation of the band gap has been interpreted in terms of the changes in the band tails associated with the disorder which would be induced by stress. Finally, the layers originally deposited with the highest hydrogen pressure show a lowest stress-which does not correlate with the hydrogen content and the optical band gap¿and some texturing. These features are likely related to the presence in these layers of a significant crystalline fraction already before annealing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The correlation between the structural (average size and density) and optoelectronic properties [band gap and photoluminescence (PL)] of Si nanocrystals embedded in SiO2 is among the essential factors in understanding their emission mechanism. This correlation has been difficult to establish in the past due to the lack of reliable methods for measuring the size distribution of nanocrystals from electron microscopy, mainly because of the insufficient contrast between Si and SiO2. With this aim, we have recently developed a successful method for imaging Si nanocrystals in SiO2 matrices. This is done by using high-resolution electron microscopy in conjunction with conventional electron microscopy in dark field conditions. Then, by varying the time of annealing in a large time scale we have been able to track the nucleation, pure growth, and ripening stages of the nanocrystal population. The nucleation and pure growth stages are almost completed after a few minutes of annealing time at 1100°C in N2 and afterward the ensemble undergoes an asymptotic ripening process. In contrast, the PL intensity steadily increases and reaches saturation after 3-4 h of annealing at 1100°C. Forming gas postannealing considerably enhances the PL intensity but only for samples annealed previously in less time than that needed for PL saturation. The effects of forming gas are reversible and do not modify the spectral shape of the PL emission. The PL intensity shows at all times an inverse correlation with the amount of Pb paramagnetic centers at the Si-SiO2 nanocrystal-matrix interfaces, which have been measured by electron spin resonance. Consequently, the Pb centers or other centers associated with them are interfacial nonradiative channels for recombination and the emission yield largely depends on the interface passivation. We have correlated as well the average size of the nanocrystals with their optical band gap and PL emission energy. The band gap and emission energy shift to the blue as the nanocrystal size shrinks, in agreement with models based on quantum confinement. As a main result, we have found that the Stokes shift is independent of the average size of nanocrystals and has a constant value of 0.26±0.03 eV, which is almost twice the energy of the Si¿O vibration. This finding suggests that among the possible channels for radiative recombination, the dominant one for Si nanocrystals embedded in SiO2 is a fundamental transition spatially located at the Si¿SiO2 interface with the assistance of a local Si-O vibration.