97 resultados para generalized multiscale entropy
Resumo:
Neuronal dynamics are fundamentally constrained by the underlying structural network architecture, yet much of the details of this synaptic connectivity are still unknown even in neuronal cultures in vitro. Here we extend a previous approach based on information theory, the Generalized Transfer Entropy, to the reconstruction of connectivity of simulated neuronal networks of both excitatory and inhibitory neurons. We show that, due to the model-free nature of the developed measure, both kinds of connections can be reliably inferred if the average firing rate between synchronous burst events exceeds a small minimum frequency. Furthermore, we suggest, based on systematic simulations, that even lower spontaneous inter-burst rates could be raised to meet the requirements of our reconstruction algorithm by applying a weak spatially homogeneous stimulation to the entire network. By combining multiple recordings of the same in silico network before and after pharmacologically blocking inhibitory synaptic transmission, we show then how it becomes possible to infer with high confidence the excitatory or inhibitory nature of each individual neuron.
Resumo:
We present a non-equilibrium theory in a system with heat and radiative fluxes. The obtained expression for the entropy production is applied to a simple one-dimensional climate model based on the first law of thermodynamics. In the model, the dissipative fluxes are assumed to be independent variables, following the criteria of the Extended Irreversible Thermodynamics (BIT) that enlarges, in reference to the classical expression, the applicability of a macroscopic thermodynamic theory for systems far from equilibrium. We analyze the second differential of the classical and the generalized entropy as a criteria of stability of the steady states. Finally, the extreme state is obtained using variational techniques and observing that the system is close to the maximum dissipation rate
Resumo:
A regularization method based on the non-extensive maximum entropy principle is devised. Special emphasis is given to the q=1/2 case. We show that, when the residual principle is considered as constraint, the q=1/2 generalized distribution of Tsallis yields a regularized solution for bad-conditioned problems. The so devised regularized distribution is endowed with a component which corresponds to the well known regularized solution of Tikhonov (1977).
Resumo:
The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.
Resumo:
We quantify the long-time behavior of a system of (partially) inelastic particles in a stochastic thermostat by means of the contractivity of a suitable metric in the set of probability measures. Existence, uniqueness, boundedness of moments and regularity of a steady state are derived from this basic property. The solutions of the kinetic model are proved to converge exponentially as t→ ∞ to this diffusive equilibrium in this distance metrizing the weak convergence of measures. Then, we prove a uniform bound in time on Sobolev norms of the solution, provided the initial data has a finite norm in the corresponding Sobolev space. These results are then combined, using interpolation inequalities, to obtain exponential convergence to the diffusive equilibrium in the strong L¹-norm, as well as various Sobolev norms.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt"
Resumo:
The proposed game is a natural extension of the Shapley and Shubik Assignment Game to the case where each seller owns a set of different objets instead of only one indivisible object. We propose definitions of pairwise stability and group stability that are adapted to our framework. Existence of both pairwise and group stable outcomes is proved. We study the structure of the group stable set and we finally prove that the set of group stable payoffs forms a complete lattice with one optimal group stable payoff for each side of the market.
Resumo:
We analyze situations in which a group of agents (and possibly a designer) have to reach a decision that will affect all the agents. Examples of such scenarios are the location of a nuclear reactor or the siting of a major sport event. To address the problem of reaching a decision, we propose a one-stage multi-bidding mechanism where agents compete for the project by submitting bids. All Nash equilibria of this mechanism are efficient. Moreover, the payoffs attained in equilibrium by the agents satisfy intuitively appealing lower bounds..
Resumo:
There is a relation between the generalized Property R Conjecture and the Schoenflies Conjecture that suggests a new line of attack on the latter. The new approach gives a quick proof of the genus 2 Schoenflies Conjecture and suffices to prove the genus 3 case, even in the absence of new progress on the generalized Property R Conjecture.
Resumo:
In this paper, a new class of generalized backward doubly stochastic differential equations is investigated. This class involves an integral with respect to an adapted continuous increasing process. A probabilistic representation for viscosity solutions of semi-linear stochastic partial differential equations with a Neumann boundary condition is given.
Resumo:
We construct generating trees with with one, two, and three labels for some classes of permutations avoiding generalized patterns of length 3 and 4. These trees are built by adding at each level an entry to the right end of the permutation, which allows us to incorporate the adjacency condition about some entries in an occurrence of a generalized pattern. We use these trees to find functional equations for the generating functions enumerating these classes of permutations with respect to different parameters. In several cases we solve them using the kernel method and some ideas of Bousquet-Mélou [2]. We obtain refinements of known enumerative results and find new ones.
Resumo:
There is recent interest in the generalization of classical factor models in which the idiosyncratic factors are assumed to be orthogonal and there are identification restrictions on cross-sectional and time dimensions. In this study, we describe and implement a Bayesian approach to generalized factor models. A flexible framework is developed to determine the variations attributed to common and idiosyncratic factors. We also propose a unique methodology to select the (generalized) factor model that best fits a given set of data. Applying the proposed methodology to the simulated data and the foreign exchange rate data, we provide a comparative analysis between the classical and generalized factor models. We find that when there is a shift from classical to generalized, there are significant changes in the estimates of the structures of the covariance and correlation matrices while there are less dramatic changes in the estimates of the factor loadings and the variation attributed to common factors.
Resumo:
Generalized multiresolution analyses are increasing sequences of subspaces of a Hilbert space H that fail to be multiresolution analyses in the sense of wavelet theory because the core subspace does not have an orthonormal basis generated by a fixed scaling function. Previous authors have studied a multiplicity function m which, loosely speaking, measures the failure of the GMRA to be an MRA. When the Hilbert space H is L2(Rn), the possible multiplicity functions have been characterized by Baggett and Merrill. Here we start with a function m satisfying a consistency condition which is known to be necessary, and build a GMRA in an abstract Hilbert space with multiplicity function m.
Resumo:
We prove that if f is a partially hyperbolic diffeomorphism on the compact manifold M with one dimensional center bundle, then the logarithm of the spectral radius of the map induced by f on the real homology groups of M is smaller or equal to the topological entropy of f. This is a particular case of the Shub's entropy conjecture, which claims that the same conclusion should be true for any C1 map on any compact manifold.