82 resultados para Symmetric Function
Resumo:
In this paper, we present a model of a symmetric Brownian motor which changes the sign of its velocity when the temperature gradient is inverted. The velocity, external work, and efficiency are studied as a function of the temperatures of the baths and other relevant parameters. The motor shows a current reversal when another parameter (a phase shift) is varied. Analytical predictions and results from numerical simulations are performed and agree very well. Generic properties of this type of motor are discussed.
Resumo:
Markowitz portfolio theory (1952) has induced research into the efficiency of portfolio management. This paper studies existing nonparametric efficiency measurement approaches for single period portfolio selection from a theoretical perspective and generalises currently used efficiency measures into the full mean-variance space. Therefore, we introduce the efficiency improvement possibility function (a variation on the shortage function), study its axiomatic properties in the context of Markowitz efficient frontier, and establish a link to the indirect mean-variance utility function. This framework allows distinguishing between portfolio efficiency and allocative efficiency. Furthermore, it permits retrieving information about the revealed risk aversion of investors. The efficiency improvement possibility function thus provides a more general framework for gauging the efficiency of portfolio management using nonparametric frontier envelopment methods based on quadratic optimisation.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt"
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We report on a series of experiments that examine bidding behavior in first-price sealed bid auctions with symmetric and asymmetric bidders. To study the extent of strategic behavior, we use an experimental design that elicits bidders' complete bid functions in each round (auction) of the experiment. In the aggregate, behavior is consistent with the basic equilibrium predictions for risk neutral or homogenous risk averse bidders (extent of bid shading, average seller's revenues and deviations from equilibrium). However, when we look at the extent of best reply behavior and the shape of bid functions, we find that individual behavior is not in line with the received equilibrium models, although it exhibits strategic sophistication.
Resumo:
We study quadratic perturbations of the integrable system (1+x)dH; where H =(x²+y²)=2: We prove that the first three Melnikov functions associated to the perturbed system give rise at most to three limit cycles.
Resumo:
L'objectiu d'aquest projecte ha estat generalitzar i integrar la funcionalitat de dos projectes anteriors que ampliaven el tractament que oferia el Magma respecte a les matrius de Hadamard. Hem implementat funcions genèriques que permeten construir noves matrius Hadamard de qualsevol mida per a cada rang i dimensió de nucli, i així ampliar la seva base de dades. També hem optimitzat la funció que calcula el nucli, i hem desenvolupat funcions que calculen la invariant Symmetric Hamming Distance Enumerator (SH-DE) proposada per Kai-Tai Fang i Gennian Gei que és més sensible per a la detecció de la no equivalència de les matrius Hadamard.
Resumo:
A new expression for the characteristic function of log-spot in Heston model is presented. This expression more clearly exhibits its properties as an analytic characteristic function and allows us to compute the exact domain of the moment generating function. This result is then applied to the volatility smile at extreme strikes and to the control of the moments of spot. We also give a factorization of the moment generating function as product of Bessel type factors, and an approximating sequence to the law of log-spot is deduced.
Resumo:
Fixed delays in neuronal interactions arise through synaptic and dendritic processing. Previous work has shown that such delays, which play an important role in shaping the dynamics of networks of large numbers of spiking neurons with continuous synaptic kinetics, can be taken into account with a rate model through the addition of an explicit, fixed delay. Here we extend this work to account for arbitrary symmetric patterns of synaptic connectivity and generic nonlinear transfer functions. Specifically, we conduct a weakly nonlinear analysis of the dynamical states arising via primary instabilities of the stationary uniform state. In this way we determine analytically how the nature and stability of these states depend on the choice of transfer function and connectivity. While this dependence is, in general, nontrivial, we make use of the smallness of the ratio in the delay in neuronal interactions to the effective time constant of integration to arrive at two general observations of physiological relevance. These are: 1 - fast oscillations are always supercritical for realistic transfer functions. 2 - Traveling waves are preferred over standing waves given plausible patterns of local connectivity.
Resumo:
We study planar central configurations of the five-body problem where three of the bodies are collinear, forming an Euler central configuration of the three-body problem, and the two other bodies together with the collinear configuration are in the same plane. The problem considered here assumes certain symmetries. From the three bodies in the collinear configuration, the two bodies at the extremities have equal masses and the third one is at the middle point between the two. The fourth and fifth bodies are placed in a symmetric way: either with respect to the line containing the three bodies, or with respect to the middle body in the collinear configuration, or with respect to the perpendicular bisector of the segment containing the three bodies. The possible stacked five-body central configurations satisfying these types of symmetries are: a rhombus with four masses at the vertices and a fifth mass in the center, and a trapezoid with four masses at the vertices and a fifth mass at the midpoint of one of the parallel sides.