51 resultados para Semilinear Schrodinger Equation
Resumo:
Per a determinar la dinàmica espai-temporal completa d’un sistema quàntic tridimensional de N partícules cal integrar l’equació d’Schrödinger en 3N dimensions. La capacitat dels ordinadors actuals permet fer-ho com a molt en 3 dimensions. Amb l’objectiu de disminuir el temps de càlcul necessari per a integrar l’equació d’Schrödinger multidimensional, es realitzen usualment una sèrie d’aproximacions, com l’aproximació de Born–Oppenheimer o la de camp mig. En general, el preu que es paga en realitzar aquestes aproximacions és la pèrdua de les correlacions quàntiques (o entrellaçament). Per tant, és necessari desenvolupar mètodes numèrics que permetin integrar i estudiar la dinàmica de sistemes mesoscòpics (sistemes d’entre tres i unes deu partícules) i en els que es tinguin en compte, encara que sigui de forma aproximada, les correlacions quàntiques entre partícules. Recentment, en el context de la propagació d’electrons per efecte túnel en materials semiconductors, X. Oriols ha desenvolupat un nou mètode [Phys. Rev. Lett. 98, 066803 (2007)] per al tractament de les correlacions quàntiques en sistemes mesoscòpics. Aquesta nova proposta es fonamenta en la formulació de la mecànica quàntica de de Broglie– Bohm. Així, volem fer notar que l’enfoc del problema que realitza X. Oriols i que pretenem aquí seguir no es realitza a fi de comptar amb una eina interpretativa, sinó per a obtenir una eina de càlcul numèric amb la que integrar de manera més eficient l’equació d’Schrödinger corresponent a sistemes quàntics de poques partícules. En el marc del present projecte de tesi doctoral es pretén estendre els algorismes desenvolupats per X. Oriols a sistemes quàntics constituïts tant per fermions com per bosons, i aplicar aquests algorismes a diferents sistemes quàntics mesoscòpics on les correlacions quàntiques juguen un paper important. De forma específica, els problemes a estudiar són els següents: (i) Fotoionització de l’àtom d’heli i de l’àtom de liti mitjançant un làser intens. (ii) Estudi de la relació entre la formulació de X. Oriols amb la aproximació de Born–Oppenheimer. (iii) Estudi de les correlacions quàntiques en sistemes bi- i tripartits en l’espai de configuració de les partícules mitjançant la formulació de de Broglie–Bohm.
Resumo:
We discuss the evolution of purity in mixed quantum/classical approaches to electronic nonadiabatic dynamics in the context of the Ehrenfest model. As it is impossible to exactly determine initial conditions for a realistic system, we choose to work in the statistical Ehrenfest formalism that we introduced in Alonso et al. [J. Phys. A: Math. Theor. 44, 396004 (2011)10.1088/1751-8113/44/39/395004]. From it, we develop a new framework to determine exactly the change in the purity of the quantum subsystem along with the evolution of a statistical Ehrenfest system. In a simple case, we verify how and to which extent Ehrenfest statistical dynamics makes a system with more than one classical trajectory, and an initial quantum pure state become a quantum mixed one. We prove this numerically showing how the evolution of purity depends on time, on the dimension of the quantum state space D, and on the number of classical trajectories N of the initial distribution. The results in this work open new perspectives for studying decoherence with Ehrenfest dynamics.
Resumo:
We study all the symmetries of the free Schr odinger equation in the non-commu- tative plane. These symmetry transformations form an infinite-dimensional Weyl algebra that appears naturally from a two-dimensional Heisenberg algebra generated by Galilean boosts and momenta. These infinite high symmetries could be useful for constructing non-relativistic interacting higher spin theories. A finite-dimensional subalgebra is given by the Schröodinger algebra which, besides the Galilei generators, contains also the dilatation and the expansion. We consider the quantization of the symmetry generators in both the reduced and extended phase spaces, and discuss the relation between both approaches.
Resumo:
We study all the symmetries of the free Schrödinger equation in the non-commu- tative plane. These symmetry transformations form an infinite-dimensional Weyl algebra that appears naturally from a two-dimensional Heisenberg algebra generated by Galilean boosts and momenta. These infinite high symmetries could be useful for constructing non-relativistic interacting higher spin theories. A finite-dimensional subalgebra is given by the Schröodinger algebra which, besides the Galilei generators, contains also the dilatation and the expansion. We consider the quantization of the symmetry generators in both the reduced and extended phase spaces, and discuss the relation between both approaches.
Resumo:
We quantify the long-time behavior of a system of (partially) inelastic particles in a stochastic thermostat by means of the contractivity of a suitable metric in the set of probability measures. Existence, uniqueness, boundedness of moments and regularity of a steady state are derived from this basic property. The solutions of the kinetic model are proved to converge exponentially as t→ ∞ to this diffusive equilibrium in this distance metrizing the weak convergence of measures. Then, we prove a uniform bound in time on Sobolev norms of the solution, provided the initial data has a finite norm in the corresponding Sobolev space. These results are then combined, using interpolation inequalities, to obtain exponential convergence to the diffusive equilibrium in the strong L¹-norm, as well as various Sobolev norms.
Resumo:
In this paper we study one-dimensional reflected backward stochastic differential equation when the noise is driven by a Brownian motion and an independent Poisson point process when the solution is forced to stay above a right continuous left-hand limited obstacle. We prove existence and uniqueness of the solution by using a penalization method combined with a monotonic limit theorem.
Resumo:
We consider multidimensional backward stochastic differential equations (BSDEs). We prove the existence and uniqueness of solutions when the coefficient grow super-linearly, and moreover, can be neither locally Lipschitz in the variable y nor in the variable z. This is done with super-linear growth coefficient and a p-integrable terminal condition (p & 1). As application, we establish the existence and uniqueness of solutions to degenerate semilinear PDEs with superlinear growth generator and an Lp-terminal data, p & 1. Our result cover, for instance, the case of PDEs with logarithmic nonlinearities.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We consider a delay differential equation with two delays. The Hopf bifurcation of this equation is investigated together with the stability of the bifurcated periodic solution, its period and the bifurcation direction. Finally, three applications are given.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt"
Resumo:
"Vegeu el resum a l’inici del document del fitxer adjunt."
Selection bias and unobservable heterogeneity applied at the wage equation of European married women
Resumo:
This paper utilizes a panel data sample selection model to correct the selection in the analysis of longitudinal labor market data for married women in European countries. We estimate the female wage equation in a framework of unbalanced panel data models with sample selection. The wage equations of females have several potential sources of.
Resumo:
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [CDF2], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the probability density function of neuronal membrane potentials and synaptic conductances. In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of an excitatory-only network. Our numerical solver allows us to obtain the time evolution of probability distribution functions, and thus, the evolution of all possible macroscopic quantities that are given by suitable moments of the probability density function. We show that this deterministic scheme is capable of capturing the bistability of stationary states observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates computed from the Fokker-Planck equation is analyzed in this bistable situation, where a bifurcation scenario, of asynchronous convergence towards stationary states, periodic synchronous solutions or damped oscillatory convergence towards stationary states, can be uncovered by increasing the strength of the excitatory coupling. Finally, the computation of moments of the probability distribution allows us to validate the applicability of a moment closure assumption used in [13] to further simplify the kinetic theory.