28 resultados para Ceramic engineering
Resumo:
Tese apresentada para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Línguas, Literaturas e Culturas
Resumo:
9th International Masonry Conference 2014, 7-9 July, Universidade do Minho, Guimarães
Resumo:
XIII DBMC – 12th International Conference on Durability of Building Materials and Components,2-5 September 2014, Universidade de São Paulo, São Paulo, Brazil
Resumo:
The formulation and use of lime mortars with ceramic particles has, in the past, been a very common technique. Knowledge of such used techniques and materials is fundamental for the successful rehabilitation and conservation of the built heritage. The durability that these mortars have shown encourages the study of the involved mechanisms, so that they may be adapted to the current reality. The considerable amount of waste from old ceramics factories which is sent for disposal might present an opportunity for the production of reliable improved lime mortars. In this paper a number of studies that characterize old building mortars containing ceramic fragments are reviewed. The most important research undertaken on laboratory prepared mortars with several heat treated clays types is presented, specifically with incorporated ceramic waste. Some studies on the pozzolanicity of heat treated clays are examined and the heating temperatures that seem most likely to achieve pozzolanicity are presented. It was verified that some heating temperatures currently used by ceramic industries might correspond to the temperatures that will achieve pozzolanicity.
Resumo:
Considering the fundamental importance of preserving the built heritage and of ensuring the good performance achieved by incorporating ceramic particles in lime mortars in ancient times, it is important to study solutions that use materials the available today, in order to produce mortars intended to repair and replace the old ones. Solutions incorporating industrial ceramic waste might be profitable for several reasons, namely for economic, environmental and technical aspects. In this paper, seven ceramic waste products collected from ceramics factories are characterized. Their mineralogy, dimensional features and pozzolanicity were determined. Three of these products, with different particle size fractions (obtained directly from milling, dust only and fragment fractions only), were selected, incorporated into air lime mortars, and their mechanical strength was determined. In the present work, evidence of mechanical efficiency, when common sand or air lime were partially replaced by ceramic wastes, was made clear, drawing attention to the sustainability of this type of mortars, hence, encouraging further research.
Resumo:
Due to their exposure to environmental conditions, outer coatings composed by render and painting system are usually the first construction elements to deteriorate and require intervention. A correct conservation and rehabilitation of these materials is fundamental once they provide protection to other façade materials. It is known that old mortar renders were essentially air lime based mortars. To maintain the integrity of the whole wall-render elements, the image of the building and to avoid accelerated degradation, conservation and rehabilitation must be implemented with compatible mortars. As that, lime based mortars would be preferable. It was also common, in ancient renders, the incorporation of ceramic residues, which is, nowadays, an abundant material, especially in Central Region of Portugal. The reuse of these materials has great relevance once their landfilling causes serious environmental issues. In an attempt to combine the environmental and technical advantages of the use of ceramic waste in mortars’ production for rehabilitation purposes, a research has been developed at the University of Coimbra, in cooperation with Nova University of Lisbon, on the long term behaviour of air lime mortars with ceramic residues. In this paper the most significant up to one year results of an experimental campaign with air lime mortars with 1:3 and 1:2 volumetric proportions and ceramic residues are presented.
Resumo:
Over the last decade, human embryonic stem cells (hESCs) have garnered a lot of attention owing to their inherent self-renewal ability and pluripotency. These characteristics have opened opportunities for potential stem cell-based regenerative medicines, for development of drug discovery platforms and as unique in vitro models for the study of early human development.(...)
Resumo:
Esta dissertação teve como objetivo o desenvolvimento de espumas porosas de hidroxiapatite (HA) baseadas em réplicas invertidas de cristais coloidais (ICC) para substituição óssea. Um ICC é uma estrutura tridimensional de elevada porosidade que apresenta uma rede interconectada de poros com elevada uniformidade de tamanhos. Este tipo de arquitetura possibilita uma proliferação celular homogénea e superiores propriedades mecânicas quando comparada com espumas de geometria não uniforme. O cristal coloidal (CC) - o molde da espuma - foi criado por empacotamento de microesferas de poliestireno (270 μm) produzidas por microfluídica e posterior tratamento térmico. O molde foi impregnado com um gel de hidroxiapatite produzido via sol-gel utilizando pentóxido de fósforo e nitrato de cálcio tetrahidratado como percursores de fósforo e cálcio, respectivamente. A espuma cerâmica foi obtida num único passo depois de um tratamento térmico a 1100oC que permitiu a solidificação do gel e a remoção do CC. A análise por espetroscopia de infravermelho por transformada de Fourier (FTIR) e difração de raios-X (XRD) revelou uma hidroxiapatite carbonatada tipo A com presença de fosfatos tricálcicos. As propriedades mecânicas foram avaliadas por testes de compressão. A biocompatibilidade in vitro foi demonstrada através de testes de adesão e proliferação celular de osteoblastos.
Resumo:
In recent years, new methods of clean and environmentally friendly energy production have been the focus of intense research efforts. Microbial fuel cells (MFCs) are devices that utilize naturally occurring microorganisms that feed on organic matter, like waste water, while producing electrical energy. The natural habitats of bacteria thriving in microbial fuel cells are usually marine and freshwater sediments. These microorganisms are called dissimilatory metal reducing bacteria (DMRB), but in addition to metals like iron and manganese, they can use organic compounds like DMSO or TMAO, radionuclides and electrodes as terminal electron acceptors in their metabolic pathways.(...)
Resumo:
The growing demand for materials and devices with new functionalities led to the increased inter-est in the field of nanomaterials and nanotechnologies. Nanoparticles, not only present a reduced size as well as high reactivity, which allows the development of electronic and electrochemical devices with exclusive properties, when compared with thin films. This dissertation aims to explore the development of several nanostructured metal oxides by sol-vothermal synthesis and its application in different electrochemical devices. Within this broad theme, this study has a specific number of objectives: a) research of the influence of the synthesis parameters to the structure and morphology of the nanoparticles; b) improvement of the perfor-mance of the electrochromic devices with the application of the nanoparticles as electrode; c) application of the nanoparticles as probes to sensing devices; and d) production of solution-pro-cessed transistors with a nanostructured metal oxide semiconductor. Regarding the results, several conclusions can be exposed. Solvothermal synthesis shows to be a very versatile method to control the growth and morphology of the nanoparticles. The electrochromic device performance is influenced by the different structures and morphologies of WO3 nanoparticles, mainly due to the surface area and conductivity of the materials. The dep-osition of the electrochromic layer by inkjet printing allows the patterning of the electrodes without wasting material and without any additional steps. Nanostructured WO3 probes were produced by electrodeposition and drop casting and applied as pH sensor and biosensor, respectively. The good performance and sensitivity of the devices is explained by the high number of electrochemical reactions occurring at the surface of the na-noparticles. GIZO nanoparticles were deposited by spin coating and used in electrolyte-gated transistors, which promotes a good interface between the semiconductor and the dielectric. The produced transistors work at low potential and with improved ON-OFF current ratio, up to 6 orders of mag-nitude. To summarize, the low temperatures used in the production of the devices are compatible with flexible substrates and additionally, the low cost of the techniques involved can be adapted for disposable devices.
Resumo:
Transparent conducting oxides (TCOs) have been largely used in the optoelectronic industry due to their singular combination of low electrical resistivity and high optical transmittance. They are usually deposited by magnetron sputtering systems being applied in several devices, specifically thin film solar cells (TFSCs). Sputtering targets are crucial components of the sputtering process, with many of the sputtered films properties dependent on the targets characteristics. The present thesis focuses on the development of high quality conductive Al-doped ZnO (AZO) ceramic sputtering targets based on nanostructured powders produced by emulsion detonation synthesis method (EDSM), and their application as a TCO. In this sense, the influence of several processing parameters was investigated from the targets raw-materials synthesis to the application of sputtered films in optoelectronic devices. The optimized manufactured AZO targets present a final density above 99 % with controlled grain size, an homogeneous microstructure with a well dispersed ZnAl2O4 spinel phase, and electrical resistivities of ~4 × 10-4 Ωcm independently on the Al-doping level among 0.5 and 2.0 wt. % Al2O3. Sintering conditions proved to have a great influence on the properties of the targets and their performance as a sputtering target. It was demonstrated that both deposition process and final properties of the films are related with the targets characteristics, which in turn depends on the initial powder properties. In parallel, the influence of several deposition parameters in the film´s properties sputtered from these targets was investigated. The sputtered AZO TCOs showed electrical properties at room temperature that are superior to simple oxides and comparable to a reference TCO – indium tin oxide (ITO), namely low electrical resistivity of 5.45 × 10-4 Ωcm, high carrier mobility (29.4 cm2V-1s-1), and high charge carrier concentration (3.97 × 1020 cm-3), and also average transmittance in the visible region > 80 %. These superior properties allowed their successful application in different optoelectronic devices.
Resumo:
The work presented in this thesis explores novel routes for the processing of bio-based polymers, developing a sustainable approach based on the use of alternative solvents such as supercritical carbon dioxide (scCO2), ionic liquids (ILs) and deep eutectic solvents (DES). The feasibility to produce polymeric foams via supercritical fluid (SCF) foaming, combined with these solvents was assessed, in order to replace conventional foaming techniques that use toxic and harmful solvents. A polymer processing methodology is presented, based on SCF foaming and using scCO2 as a foaming agent. The SCF foaming of different starch based polymeric blends was performed, namely starch/poly(lactic acid) (SPLA) and starch/poly(ε-caprolactone) (SPCL). The foaming process is based on the fact that CO2 molecules can dissolve in the polymer, changing their mechanical properties and after suitable depressurization, are able to create a foamed (porous) material. In these polymer blends, CO2 presents limited solubility and in order to enhance the foaming effect, two different imidazolium based ILs (IBILs) were combined with this process, by doping the blends with IL. The use of ILs proved useful and improved the foaming effect in these starch-based polymer blends. Infrared spectroscopy (FTIR-ATR) proved the existence of interactions between the polymer blend SPLA and ILs, which in turn diminish the forces that hold the polymeric structure. This is directly related with the ability of ILs to dissolve more CO2. This is also clear from the sorption experiments results, where the obtained apparent sorption coefficients in presence of IL are higher compared to the ones of the blend SPLA without IL. The doping of SPCL with ILs was also performed. The foaming of the blend was achieved and resulted in porous materials with conductivity values close to the ones of pure ILs. This can open doors to applications as self-supported conductive materials. A different type of solvents were also used in the previously presented processing method. If different applications of the bio-based polymers are envisaged, replacing ILs must be considered, especially due to the poor sustainability of some ILs and the fact that there is not a well-established toxicity profile. In this work natural DES – NADES – were the solvents of choice. They present some advantages relatively to ILs since they are easy to produce, cheaper, biodegradable and often biocompatible, mainly due to the fact that they are composed of primary metabolites such as sugars, carboxylic acids and amino-acids. NADES were prepared and their physicochemical properties were assessed, namely the thermal behavior, conductivity, density, viscosity and polarity. With this study, it became clear that these properties can vary with the composition of NADES, as well as with their initial water content. The use of NADES in the SCF foaming of SPCL, acting as foaming agent, was also performed and proved successful. The SPCL structure obtained after SCF foaming presented enhanced characteristics (such as porosity) when compared with the ones obtained using ILs as foaming enhancers. DES constituted by therapeutic compounds (THEDES) were also prepared. The combination of choline chloride-mandelic acid, and menthol-ibuprofen, resulted in THEDES with thermal behavior very distinct from the one of their components. The foaming of SPCL with THEDES was successful, and the impregnation of THEDES in SPCL matrices via SCF foaming was successful, and a controlled release system was obtained in the case of menthol-ibuprofen THEDES.
Resumo:
This case study illustrates the application of the Value Creation Radar (VCR) to SenSyF, an Earth Observation (EO) system which was developed by Deimos Engenharia S.A. (DME), the Portuguese affiliate of Elecnor Deimos. It describes how a team of consultants adopted the VCR in order to find new market applications for SenSyF, selected the one with the highest potential, and defined a path to guarantee a sustainable market launch. This case study highlights the main challenges of bringing a technology-driven company closer to the market in the pursuit of long-term sustainability, while not compromising its technological capabilities