10 resultados para parametric oscillators and amplifiers
em Instituto Politécnico do Porto, Portugal
Resumo:
Dissertação de Mestrado em Finanças Empresariais
Resumo:
A implementação da evolução tecnológica no setor da construção tem se caracterizado pelo aparecimento de novas tecnologias que dinamizam os processos de troca de informação entre os vários intervenientes no ciclo de vida do empreendimento. O surgimento da tecnologia Building Information Modeling - BIM assente na modelação paramétrica e na interoperabilidade suportada em ficheiros de padrão aberto (IFC) pressupõem um novo paradigma na forma como são tratados os processos de troca de informação entre os vários intervenientes no ciclo de vida dos empreendimentos. Com base no BIM o Construction Operations Building Information Exchange – COBie, é outra tecnologia recente que recolhe informações não geométricas associadas ao modelo e em conjunto com a informação geométrica produzida pelo BIM fazem parte dos documentos de entrega para a fase Facility Management – FM. O objetivo da presente dissertação centrou-se no estudo da evolução de um modelo BIM de construção para a gestão de empreendimento. Foi desenvolvido o estudo de um modelo protótipo que incidiu na utilização de softwares para verificação e aplicação das tecnologias COBie e BIM e também foi sincronizado com a fase FM. Da aplicação dos requisitos COBie e modelação BIM foram extraídas informações geométricas e não geométricas preenchidas nas folhas de trabalho COBie. As principais conclusões do estudo realizado foram que as tecnologias COBie e BIM têm pouca implantação a nível nacional e a sua integração dinamiza os processos, reduzindo custos e aumentando a qualidade da informação fornecida.
Resumo:
Dissertação de Mestrado apresentado ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Contabilidade e Finanças, sob orientação do Doutor Carlos Quelhas Martins
Resumo:
This work reports on an experimental and finite element method (FEM) parametric study of adhesively-bonded single and double-strap repairs on carbon-epoxy structures under buckling unrestrained compression. The influence of the overlap length and patch thickness was evaluated. This loading gains a particular significance from the additional characteristic mechanisms of structures under compression, such as fibres microbuckling, for buckling restrained structures, or global buckling of the assembly, if no transverse restriction exists. The FEM analysis is based on the use of cohesive elements including mixed-mode criteria to simulate a cohesive fracture of the adhesive layer. Trapezoidal laws in pure modes I and II were used to account for the ductility of most structural adhesives. These laws were estimated for the adhesive used from double cantilever beam (DCB) and end-notched flexure (ENF) tests, respectively, using an inverse technique. The pure mode III cohesive law was equalled to the pure mode II one. Compression failure in the laminates was predicted using a stress-based criterion. The accurate FEM predictions open a good prospect for the reduction of the extensive experimentation in the design of carbon-epoxy repairs. Design principles were also established for these repairs under buckling.
Resumo:
We study exotic patterns appearing in a network of coupled Chen oscillators. Namely, we consider a network of two rings coupled through a “buffer” cell, with Z3×Z5 symmetry group. Numerical simulations of the network reveal steady states, rotating waves in one ring and quasiperiodic behavior in the other, and chaotic states in the two rings, to name a few. The different patterns seem to arise through a sequence of Hopf bifurcations, period-doubling, and halving-period bifurcations. The network architecture seems to explain certain observed features, such as equilibria and the rotating waves, whereas the properties of the chaotic oscillator may explain others, such as the quasiperiodic and chaotic states. We use XPPAUT and MATLAB to compute numerically the relevant states.
Resumo:
Power laws, also known as Pareto-like laws or Zipf-like laws, are commonly used to explain a variety of real world distinct phenomena, often described merely by the produced signals. In this paper, we study twelve cases, namely worldwide technological accidents, the annual revenue of America׳s largest private companies, the number of inhabitants in America׳s largest cities, the magnitude of earthquakes with minimum moment magnitude equal to 4, the total burned area in forest fires occurred in Portugal, the net worth of the richer people in America, the frequency of occurrence of words in the novel Ulysses, by James Joyce, the total number of deaths in worldwide terrorist attacks, the number of linking root domains of the top internet domains, the number of linking root domains of the top internet pages, the total number of human victims of tornadoes occurred in the U.S., and the number of inhabitants in the 60 most populated countries. The results demonstrate the emergence of statistical characteristics, very close to a power law behavior. Furthermore, the parametric characterization reveals complex relationships present at higher level of description.
Resumo:
In this paper, we apply multidimensional scaling (MDS) and parametric similarity indices (PSI) in the analysis of complex systems (CS). Each CS is viewed as a dynamical system, exhibiting an output time-series to be interpreted as a manifestation of its behavior. We start by adopting a sliding window to sample the original data into several consecutive time periods. Second, we define a given PSI for tracking pieces of data. We then compare the windows for different values of the parameter, and we generate the corresponding MDS maps of ‘points’. Third, we use Procrustes analysis to linearly transform the MDS charts for maximum superposition and to build a global MDS map of “shapes”. This final plot captures the time evolution of the phenomena and is sensitive to the PSI adopted. The generalized correlation, the Minkowski distance and four entropy-based indices are tested. The proposed approach is applied to the Dow Jones Industrial Average stock market index and the Europe Brent Spot Price FOB time-series.
Resumo:
23rd International Conference on Real-Time Networks and Systems (RTNS 2015). 4 to 6, Nov, 2015, Main Track. Lille, France. Best Paper Award Nominee
Resumo:
We study the peculiar dynamical features of a fractional derivative of complex-order network. The network is composed of two unidirectional rings of cells, coupled through a "buffer" cell. The network has a Z3 × Z5 cyclic symmetry group. The complex derivative Dα±jβ, with α, β ∈ R+ is a generalization of the concept of integer order derivative, where α = 1, β = 0. Each cell is modeled by the Chen oscillator. Numerical simulations of the coupled cell system associated with the network expose patterns such as equilibria, periodic orbits, relaxation oscillations, quasiperiodic motion, and chaos, in one or in two rings of cells. In addition, fixing β = 0.8, we perceive differences in the qualitative behavior of the system, as the parameter c ∈ [13, 24] of the Chen oscillator and/or the real part of the fractional derivative, α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, are varied. Some patterns produced by the coupled system are constrained by the network architecture, but other features are only understood in the light of the internal dynamics of each cell, in this case, the Chen oscillator. What is more important, architecture and/or internal dynamics?
Resumo:
In this work an adaptive modeling and spectral estimation scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for speech enhancement. Both speech and noise signals are modeled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. The model parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The speech enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. This approach is particularly useful as a pre-processing module for parametric based speech recognition systems that rely on spectral time dependent models. The system performance has been evaluated by a set of human listeners and by spectral distances. In both cases the use of this pre-processing module has led to improved results.