4 resultados para inorganic nitrogen leaching
em Instituto Politécnico do Porto, Portugal
Resumo:
Mestrado em Engenharia Química. Ramo Tecnologias de Protecção Ambiental.
Oxidative Leaching of metals from electronic waste with solutions based on quaternary ammonium salts
Resumo:
The treatment of electric and electronic waste (WEEE) is a problem which receives ever more attention. An inadequate treatment results in harmful products ending up in the environment. This project intends to investigate the possibilities of an alternative route for recycling of metals from printed circuit boards (PCBs) obtained from rejected computers. The process is based on aqueous solutions composed of an etchant, either 0.2 M CuCl2.2H2O or 0.2 M FeCl3.6H2O, and a quaternary ammonium salt (quat) such as choline chloride or chlormequat. These solutions are reminiscent of deep eutectic solvents (DES) based on quats. DES are quite similar to ionic liquids (ILs) and are used as well as alternative solvents with a great diversity of physical properties, making them attractive for replacement of hazardous, volatile solvents (e.g. VOCs). A remarkable difference between genuine DES and ILs with the solutions used in this project is the addition of rather large quantities of water. It is shown the presence of water has a lot of advantages on the leaching of metals, while the properties typical for DES still remain. The oxidizing capacities of Cu(II) stem from the existence of a stable Cu(I) component in quat based DES and thus the leaching stems from the activity of the Cu(II)/Cu(I) redox couple. The advantage of Fe(III) in combination with DES is the fact that the Fe(III)/Fe(II) redox couple becomes reversible, which is not true in pure water. This opens perspectives for regeneration of the etching solution. In this project the leaching of copper was studied as a function of gradual increasing water content from 0 - 100w% with the same concentration of copper chloride or iron(III) chloride at room temperature and 80ºC. The solutions were also tested on real PCBs. At room temperature a maximum leaching effect for copper was obtained with 30w% choline chloride with 0.2 M CuCl2.2H2O. The leaching effect is still stronger at 80°C, b ut of course these solutions are more energy consuming. For aluminium, tin, zinc and lead, the leaching was faster at 80ºC. Iron and nickel dissolved easily at room temperature. The solutions were not able to dissolve gold, silver, rhodium and platinum.
Resumo:
O instável mas tendencialmente crescente preço dos combustíveis associado a preocupações ambientais cada vez mais enraizadas nas sociedades, têm vindo a despoletar uma maior atenção à procura de combustíveis alternativos. Por outro lado, várias projecções indicam um aumento muito acentuado do consumo energético global no curto prazo, fruto do aumento da população e do nível de industrialização das sociedades. Neste contexto, o biodiesel (ésteres de ácidos gordos) obtido através da transesterificação de triglicerídeos de origem vegetal ou animal, surge como a alternativa “verde” mais viável para utilização em equipamentos de combustão. A reacção de transesterificação é catalisada, por norma com recurso a catalisadores homogéneos alcalinos (NaOH ou KOH). Este tipo de processo, o único actualmente com expressão a nível industrial, apresenta algumas desvantagens que, para além de aumentarem o custo do produto final, contribuem para reduzir a benignidade do mesmo: a impossibilidade de reutilização do catalisador, o aumento do número e complexidade das etapas de separação e a produção de efluentes resultantes das referidas etapas. Com o intuito de minimizar ou eliminar estes problemas, vários catalisadores heterogéneos têm vindo a ser estudados para esta reacção. Apesar de muitos apresentarem resultados promissores, a grande maioria não tem viabilidade para aplicação industrial seja devido ao seu próprio custo, seja devido aos pré-tratamentos necessários à sua utilização. Entre estes catalisadores, o óxido de cálcio é talvez o que apresenta resultados mais promissores. O crescente número de estudos envolvendo este catalisador em detrimento de outros, é por si mesmo prova do potencial do CaO. A realização deste trabalho pretendia atingir os seguintes objectivos principais: • Avaliar a elegibilidade do óxido de cálcio enquanto catalisador da reacção de transesterificação de óleos alimentares usados com metanol; • Avaliar qual a sua influência nas características dos produtos finais; • Avaliar as diferenças de performance entre o óxido de cálcio activado em atmosfera inerte (N2) e em ar, enquanto catalisadores da reacção de transesterificação de óleos alimentares usados com metanol; • Optimizar as condições da reacção com recurso às ferramentas matemáticas disponibilizadas pelo planeamento factorial, através da variação de quatro factores chave de influência: temperatura, tempo, relação metanol / óleo e massa de catalisador utilizado. O CaO utlizado foi obtido a partir de carbonato de cálcio calcinado numa mufla a 750 °C durante 3 h. Foi posteriormente activado a 900 °C durante 2h, em atmosferas diferentes: azoto (CaO-N2) e ar (CaO-Ar). Avaliaram-se algumas propriedades dos catalisadores assim preparados, força básica, concentração de centros activos e áreas específicas, tendo-se obtido uma força básica situada entre 12 e 14 para ambos os catalisadores, uma concentração de centros activos de 0,0698 mmol/g e 0,0629 mmol/g e áreas específicas de 10 m2/g e 11 m2/g respectivamente para o CaO-N2 e CaO-Ar. Efectuou-se a transesterificação, com catálise homogénea, da mistura de óleos usados utilizada neste trabalho com o objectivo de determinar os limites para o teor de FAME’s (abreviatura do Inglês de Fatty Acid Methyl Esters’) que se poderiam obter. Foi este o parâmetro avaliado em cada uma das amostras obtidas por catálise heterogénea. Os planos factoriais realizados tiveram como objectivo maximizar a sua quantidade recorrendo à relação ideal entre tempo de reacção, temperatura, massa de catalisador e quantidade de metanol. Verificou-se que o valor máximo de FAME’s obtidos a partir deste óleo estava situado ligeiramente acima dos 95 % (m/m). Realizaram-se três planos factoriais com cada um dos catalisadores de CaO até à obtenção das condições óptimas para a reacção. Não se verificou influência significativa da relação entre a quantidade de metanol e a massa de óleo na gama de valores estudada, pelo que se fixou o valor deste factor em 35 ml de metanol / 85g de óleo (relação molar aproximada de 8:1). Verificou-se a elegibilidade do CaO enquanto catalisador para a reacção estudada, não se tendo observado diferenças significativas entre a performance do CaO-N2 e do CaO-Ar. Identificaram-se as condições óptimas para a reacção como sendo os valores de 59 °C para a temperatura, 3h para o tempo e 1,4 % de massa de catalisador relativamente à massa de óleo. Nas referidas condições, obtiveram-se produtos com um teor de FAME’s de 95,7 % na catálise com CaO-N2 e 95,3 % na catálise com CaO-Ar. Alguns autores de estudos consultados no desenvolvimento do presente trabalho, referiam como principal problema da utilização do CaO, a lixiviação de cálcio para os produtos obtidos. Este facto foi confirmado no presente trabalho e na tentativa de o contornar, tentou-se promover a carbonatação do cálcio com a passagem de ar comprimido através dos produtos e subsequente filtração. Após a realização deste tratamento, não mais se observaram alterações nas suas propriedades (aparecimento de turvação ou precipitados), no entanto, nos produtos obtidos nas condições óptimas, a concentração de cálcio determinada foi de 527 mg/kg no produto da reacção catalisada com CaO-N2 e 475 mg/kg com CaO-A. O óxido de cálcio apresentou-se como um excelente catalisador na transesterificação da mistura de óleos alimentares usados utilizada no presente trabalho, apresentando uma performance ao nível da obtida por catálise homogénea básica. Não se observaram diferenças significativas de performance entre o CaO-N2 e o CaO-Ar, sendo possível obter nas mesmas condições reaccionais produtos com teores de FAME’s superiores a 95 % utilizando qualquer um deles como catalisador. O elevado teor de cálcio lixiviado observado nos produtos, apresenta-se como o principal obstáculo à aplicação a nível industrial do óxido de cálcio como catalisador para a transesterificação de óleos.
Resumo:
Ammonia is an important gas in many power plants and industrial processes so its detection is of extreme importance in environmental monitoring and process control due to its high toxicity. Ammonia’s threshold limit is 25 ppm and the exposure time limit is 8 h, however exposure to 35 ppm is only secure for 10 min. In this work a brief introduction to ammonia aspects are presented, like its physical and chemical properties, the dangers in its manipulation, its ways of production and its sources. The application areas in which ammonia gas detection is important and needed are also referred: environmental gas analysis (e.g. intense farming), automotive-, chemical- and medical industries. In order to monitor ammonia gas in these different areas there are some requirements that must be attended. These requirements determine the choice of sensor and, therefore, several types of sensors with different characteristics were developed, like metal oxides, surface acoustic wave-, catalytic-, and optical sensors, indirect gas analyzers, and conducting polymers. All the sensors types are described, but more attention will be given to polyaniline (PANI), particularly to its characteristics, syntheses, chemical doping processes, deposition methods, transduction modes, and its adhesion to inorganic materials. Besides this, short descriptions of PANI nanostructures, the use of electrospinning in the formation of nanofibers/microfibers, and graphene and its characteristics are included. The created sensor is an instrument that tries to achieve a goal of the medical community in the control of the breath’s ammonia levels being an easy and non-invasive method for diagnostic of kidney malfunction and/or gastric ulcers. For that the device should be capable to detect different levels of ammonia gas concentrations. So, in the present work an ammonia gas sensor was developed using a conductive polymer composite which was immobilized on a carbon transducer surface. The experiments were targeted to ammonia measurements at ppb level. Ammonia gas measurements were carried out in the concentration range from 1 ppb to 500 ppb. A commercial substrate was used; screen-printed carbon electrodes. After adequate surface pre-treatment of the substrate, its electrodes were covered by a nanofibrous polymeric composite. The conducting polyaniline doped with sulfuric acid (H2SO4) was blended with reduced graphene oxide (RGO) obtained by wet chemical synthesis. This composite formed the basis for the formation of nanofibers by electrospinning. Nanofibers will increase the sensitivity of the sensing material. The electrospun PANI-RGO fibers were placed on the substrate and then dried at ambient temperature. Amperometric measurements were performed at different ammonia gas concentrations (1 to 500 ppb). The I-V characteristics were registered and some interfering gases were studied (NO2, ethanol, and acetone). The gas samples were prepared in a custom setup and were diluted with dry nitrogen gas. Electrospun nanofibers of PANI-RGO composite demonstrated an enhancement in NH3 gas detection when comparing with only electrospun PANI nanofibers. Was visible higher range of resistance at concentrations from 1 to 500 ppb. It was also observed that the sensor had stable, reproducible and recoverable properties. Moreover, it had better response and recovery times. The new sensing material of the developed sensor demonstrated to be a good candidate for ammonia gas determination.