5 resultados para expectation
em Instituto Politécnico do Porto, Portugal
Resumo:
Nota: 18 valores
Resumo:
This paper proposes a particle swarm optimization (PSO) approach to support electricity producers for multiperiod optimal contract allocation. The producer risk preference is stated by a utility function (U) expressing the tradeoff between the expectation and variance of the return. Variance estimation and expected return are based on a forecasted scenario interval determined by a price range forecasting model developed by the authors. A certain confidence level is associated to each forecasted scenario interval. The proposed model makes use of contracts with physical (spot and forward) and financial (options) settlement. PSO performance was evaluated by comparing it with a genetic algorithm-based approach. This model can be used by producers in deregulated electricity markets but can easily be adapted to load serving entities and retailers. Moreover, it can easily be adapted to the use of other type of contracts.
Resumo:
This paper addresses the optimal involvement in derivatives electricity markets of a power producer to hedge against the pool price volatility. To achieve this aim, a swarm intelligence meta-heuristic optimization technique for long-term risk management tool is proposed. This tool investigates the long-term opportunities for risk hedging available for electric power producers through the use of contracts with physical (spot and forward contracts) and financial (options contracts) settlement. The producer risk preference is formulated as a utility function (U) expressing the trade-off between the expectation and the variance of the return. Variance of return and the expectation are based on a forecasted scenario interval determined by a long-term price range forecasting model. This model also makes use of particle swarm optimization (PSO) to find the best parameters allow to achieve better forecasting results. On the other hand, the price estimation depends on load forecasting. This work also presents a regressive long-term load forecast model that make use of PSO to find the best parameters as well as in price estimation. The PSO technique performance has been evaluated by comparison with a Genetic Algorithm (GA) based approach. A case study is presented and the results are discussed taking into account the real price and load historical data from mainland Spanish electricity market demonstrating the effectiveness of the methodology handling this type of problems. Finally, conclusions are dully drawn.
Resumo:
O desenvolvimento deste trabalho teve como objectivo a optimização de um sistema de climatização industrial, constituído por quatro centrais de climatização adiabáticas, que apresentam limitações de capacidade de arrefecimento, controlo e eficiência. Inicialmente foi necessária a pesquisa bibliográfica e recolha de informação relativa à indústria têxtil e ao processo de arrefecimento evaporativo. Numa fase posterior foram recolhidos e analisados os diversos dados essenciais à compreensão do binómio edifício/sistema de climatização, para a obtenção de possíveis hipóteses de optimização. Da fase de recolha de informações e dados, destaca-se, também, a realização de análises à qualidade do ar interior (QAI). As optimizações seleccionadas como passíveis de implementação, foram estudadas e analisadas com o auxílio do software de simulação energética dinâmica DesignBuilder e os resultados obtidos foram devidamente trabalhados e ajustados de modo a permitir uma assimilação amigável e de fácil interpretação das suas vantagens e desvantagens, tendo ainda sido objecto de estudo de viabilidade económica. A optimização proposta reflecte uma melhoria substancial das condições interiores ao nível da temperatura e humidade relativa, resultando, ainda assim, numa redução de consumos energéticos na ordem dos 23 % (490.337 kWh), isto é, uma poupança anual de 42.169 € aos custos de exploração e com um período de retorno de 1 ano e 11 meses.
Resumo:
Trabalho de projeto apresentado ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Contabilidade e Finanças, sob a orientação do Mestre Paulino Manuel Leite da Silva