15 resultados para TATA box basal promoter element

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Contabilidade e Finanças Orientadora: Professora Doutora Patrícia Ramos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introdução: O envolvimento respiratório é a principal causa de morbilidade e mortalidade na Fibrose Quística (FQ). Dados pediátricos sobre atividade física (AF), saturação periférica da oxi-hemoglobina (SpO2) e pico do fluxo da tosse (PFT) são escassos e não padronizados. Objetivos: Avaliar a função pulmonar (FP), AF, SpO2 e PFT, em crianças e adolescentes com FQ, no estado basal e em agudização (AR) e, na fase estável, avaliar a correlação entre as variáveis. Métodos: Realizou-se um estudo observacional prospetivo, com análise de espirometria, podometria, oximetria noturna e PFT, em condições basais. Na AR reavaliaram-se os mesmos parâmetros às 24-48 horas, 7, 15 e 30 dias, excetuando a AF aos 7 dias. Resultados: Avaliaram-se 8 doentes dos quais dois apresentaram um comprometimento ligeiro da FP e um moderado. A SpO2 foi de 96,2% [95,6; 96,6] e o número médio de passos/dia (NMP) foi de 6369 [4431; 10588]. Todos apresentaram valores do PFT inferiores ao percentil 5 para o género e idade (265 L/min [210; 290]). Apesar de não estatisticamente significativa, a correlação foi moderada entre FEV1 e SpO2 nocturna (rs =0,61; p=0,11); entre PFT e idade (rs=0,69; p=0,06); e entre PFT e capacidade vital forçada (CVF) (rs=0,54; p=0,17). Não se verificou correlação entre FEV1 e idade, NMP e PFT; e entre NMP e idade. No único caso de AR, à exceção da frequência respiratória, verificou-se a diminuição das variáveis às 24-48h; após 1 mês, a maioria das variáveis aproximou-se ou igualou os valores basais. Conclusão: Os resultados sugerem uma tendência para melhores valores de FEV1 corresponderem a melhores SpO2 noturnas e que, quanto maior a idade e a CVF, maior é o PFT. Não foi possível avaliar o impacto da AR por ter ocorrido apenas um caso.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactivation of telomerase has been implicated in human tumorigenesis, but the underlying mechanisms remain poorly understood. Here we report the presence of recurrent somatic mutations in the TERT promoter in cancers of the central nervous system (43%), bladder (59%), thyroid (follicular cell-derived, 10%) and skin (melanoma, 29%). In thyroid cancers, the presence of TERT promoter mutations (when occurring together with BRAF mutations) is significantly associated with higher TERT mRNA expression, and in glioblastoma we find a trend for increased telomerase expression in cases harbouring TERT promoter mutations. Both in thyroid cancers and glioblastoma, TERT promoter mutations are significantly associated with older age of the patients. Our results show that TERT promoter mutations are relatively frequent in specific types of human cancers, where they lead to enhanced expression of telomerase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we employed a hybrid method, combining RF-magnetron sputtering with evaporation, for the deposition of tailor made metallic precursors, with varying number of Zn/Sn/Cu (ZTC) periods and compared two approaches to sulphurization. Two series of samples with 1×, 2× and 4× ZTC periods have been prepared. One series of precursors was sulphurized in a tubular furnace directly exposed to a sulphur vapour and N2+5% H2 flux at a pressure of 5.0×10+4 Pa. A second series of identical precursors was sulphurized in the same furnace but inside a graphite box where sulphur pellets have been evaporated again in the presence of N2+5% H2 and at the same pressure as for the sulphur flux experiments. The morphological and chemical analyses revealed a small grain structure but good average composition for all three films sulphurized in the graphite box. As for the three films sulphurized in sulphur flux grain growth was seen with the increase of the number of ZTC periods whilst, in terms of composition, they were slightly Zn poor. The films' crystal structure showed that Cu2ZnSnS4 is the dominant phase. However, in the case of the sulphur flux films SnS2 was also detected. Photoluminescence spectroscopy studies showed an asymmetric broad band emission whichoccurs in the range of 1–1.5 eV. Clearly the radiative recombination efficiency is higher in the series of samples sulphurized in sulphur flux. We have found that sulphurization in sulphur flux leads to better film morphology than when the process is carried out in a graphite box in similar thermodynamic conditions. Solar cells have been prepared and characterized showing a correlation between improved film morphology and cell performance. The best cells achieved an efficiency of 2.4%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Component joining is typically performed by welding, fastening, or adhesive-bonding. For bonded aerospace applications, adhesives must withstand high-temperatures (200°C or above, depending on the application), which implies their mechanical characterization under identical conditions. The extended finite element method (XFEM) is an enhancement of the finite element method (FEM) that can be used for the strength prediction of bonded structures. This work proposes and validates damage laws for a thin layer of an epoxy adhesive at room temperature (RT), 100, 150, and 200°C using the XFEM. The fracture toughness (G Ic ) and maximum load ( ); in pure tensile loading were defined by testing double-cantilever beam (DCB) and bulk tensile specimens, respectively, which permitted building the damage laws for each temperature. The bulk test results revealed that decreased gradually with the temperature. On the other hand, the value of G Ic of the adhesive, extracted from the DCB data, was shown to be relatively insensitive to temperature up to the glass transition temperature (T g ), while above T g (at 200°C) a great reduction took place. The output of the DCB numerical simulations for the various temperatures showed a good agreement with the experimental results, which validated the obtained data for strength prediction of bonded joints in tension. By the obtained results, the XFEM proved to be an alternative for the accurate strength prediction of bonded structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesive-bonding for the unions in multi-component structures is gaining momentum over welding, riveting and fastening. It is vital for the design of bonded structures the availability of accurate damage models, to minimize design costs and time to market. Cohesive Zone Models (CZM’s) have been used for fracture prediction in structures. The eXtended Finite Element Method (XFEM) is a recent improvement of the Finite Element Method (FEM) that relies on traction-separation laws similar to those of CZM’s but it allows the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom. This work proposes and validates a damage law to model crack propagation in a thin layer of a structural epoxy adhesive using the XFEM. The fracture toughness in pure mode I (GIc) and tensile cohesive strength (sn0) were defined by Double-Cantilever Beam (DCB) and bulk tensile tests, respectively, which permitted to build the damage law. The XFEM simulations of the DCB tests accurately matched the experimental load-displacement (P-d) curves, which validated the analysis procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural integrity of multi-component structures is usually determined by the strength and durability of their unions. Adhesive bonding is often chosen over welding, riveting and bolting, due to the reduction of stress concentrations, reduced weight penalty and easy manufacturing, amongst other issues. In the past decades, the Finite Element Method (FEM) has been used for the simulation and strength prediction of bonded structures, by strength of materials or fracture mechanics-based criteria. Cohesive-zone models (CZMs) have already proved to be an effective tool in modelling damage growth, surpassing a few limitations of the aforementioned techniques. Despite this fact, they still suffer from the restriction of damage growth only at predefined growth paths. The eXtended Finite Element Method (XFEM) is a recent improvement of the FEM, developed to allow the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom with special displacement functions, thus overcoming the main restriction of CZMs. These two techniques were tested to simulate adhesively bonded single- and double-lap joints. The comparative evaluation of the two methods showed their capabilities and/or limitations for this specific purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to optimize the heat flow through the pultrusion die assembly system on the manufacturing process of a specific glass-fiber reinforced polymer (GFRP) pultrusion profile. The control of heat flow and its distribution through whole die assembly system is of vital importance in optimizing the actual GFRP pultrusion process. Through mathematical modeling of heating-die process, by means of Finite Element Analysis (FEA) program, an optimum heater selection, die position and temperature control was achieved. The thermal environment within the die was critically modeled relative not only to the applied heat sources, but also to the conductive and convective losses, as well as the thermal contribution arising from the exothermic reaction of resin matrix as it cures or polymerizes from the liquid to solid condition. Numerical simulation was validated with basis on thermographic measurements carried out on key points along the die during pultrusion process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimize heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed with basis on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most common techniques for stress analysis/strength prediction of adhesive joints involve analytical or numerical methods such as the Finite Element Method (FEM). However, the Boundary Element Method (BEM) is an alternative numerical technique that has been successfully applied for the solution of a wide variety of engineering problems. This work evaluates the applicability of the boundary elem ent code BEASY as a design tool to analyze adhesive joints. The linearity of peak shear and peel stresses with the applied displacement is studied and compared between BEASY and the analytical model of Frostig et al., considering a bonded single-lap joint under tensile loading. The BEM results are also compared with FEM in terms of stress distributions. To evaluate the mesh convergence of BEASY, the influence of the mesh refinement on peak shear and peel stress distributions is assessed. Joint stress predictions are carried out numerically in BEASY and ABAQUS®, and analytically by the models of Volkersen, Goland, and Reissner and Frostig et al. The failure loads for each model are compared with experimental results. The preparation, processing, and mesh creation times are compared for all models. BEASY results presented a good agreement with the conventional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

João Vinagre, Vasco Pinto and Ricardo Celestino contributed equally to the manuscript.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatic mutations in the promoter region of telomerase reverse transcriptase (TERT) gene, mainly at positions c.-124 and c.-146 bp, are frequent in several human cancers; yet its presence in gastrointestinal stromal tumor (GIST) has not been reported to date. Herein, we searched for the presence and clinicopathological association of TERT promoter mutations in genomic DNA from 130 bona fide GISTs. We found TERT promoter mutations in 3.8% (5/130) of GISTs. The c.-124C>T mutation was the most common event, present in 2.3% (3/130), and the c.-146C>T mutation in 1.5% (2/130) of GISTs. No significant association was observed between TERT promoter mutation and patient's clinicopathological features. The present study establishes the low frequency (4%) of TERT promoter mutations in GISTs. Further studies are required to confirm our findings and to elucidate the hypothetical biological and clinical impact of TERT promoter mutation in GIST pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Telomerase promoter mutations (TERT) were recently described in follicular cell-derived thyroid carcinomas (FCDTC) and seem to be more prevalent in aggressive cancers. Objectives: We aimed to evaluate the frequency of TERT promoter mutations in thyroid lesions and to investigate the prognostic significance of such mutations in a large cohort of patients with differentiated thyroid carcinomas (DTCs). Design: This was a retrospective observational study. Setting and Patients: We studied 647 tumors and tumor-like lesions. A total of 469 patients with FCDTC treated and followed in five university hospitals were included. Mean follow-up (±SD) was 7.8 ± 5.8 years. Main Outcome Measures: Predictive value of TERT promoter mutations for distant metastasization, disease persistence at the end of follow-up, and disease-specific mortality. Results: TERT promoter mutations were found in 7.5% of papillary carcinomas (PTCs), 17.1% of follicular carcinomas, 29.0% of poorly differentiated carcinomas, and 33.3% of anaplastic thyroid carcinomas. Patients with TERT-mutated tumors were older (P < .001) and had larger tumors (P = .002). In DTCs, TERT promoter mutations were significantly associated with distant metastases (P < .001) and higher stage (P < .001). Patients with DTC harboring TERT promoter mutations were submitted to more radioiodine treatments (P = .009) with higher cumulative dose (P = .004) and to more treatment modalities (P = .001). At the end of follow-up, patients with TERT-mutated DTCs were more prone to have persistent disease (P = .001). TERT promoter mutations were significantly associated with disease-specific mortality [in the whole FCDTC (P < .001)] in DTCs (P < .001), PTCs (P = .001), and follicular carcinomas (P < .001). After adjusting for age at diagnosis and gender, the hazard ratio was 10.35 (95% confidence interval 2.01–53.24; P = .005) in DTC and 23.81 (95% confidence interval 1.36–415.76; P = .03) in PTCs. Conclusions: TERT promoter mutations are an indicator of clinically aggressive tumors, being correlated with worse outcome and disease-specific mortality in DTC. TERT promoter mutations have an independent prognostic value in DTC and, notably, in PTC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by preparing blank materials where the imprinting stage was made without the template molecule. The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection capabilities below 1 nM. The blank materials were unable to provide a linear response against log(concentration), showing only a slight potential change towards more positive potentials with increasing concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was successfully tested on the analysis of spiked environmental water samples. The sensors were further applied onto recycled chips, comprehending one site for the reference electrode and two sites for different selective membranes, in a biparametric approach for “in situ” analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular imprinting is a useful technique for the preparation of functional materials with molecular recognition properties. A Biomimetic Sensor Potentiometric System was developed for assessment of doxycycline (DOX) antibiotic. The molecularly imprinted polymer (MIP) was synthesized by using doxycycline as a template molecule, methacrylic acid (MAA) and/or acrylamide (AA) as a functional monomer and ethylene glycol dimethacrylat (EGDMA) as a cross-linking agent. The sensing elements were fabricated by the inclusion of DOX imprinted polymers in polyvinyl chloride (PVC) matrix. The sensors showed a high selectivity and a sensitive response to the template in aqueous system. Electrochemical evaluation of these sensors under static (batch) mode of operation reveals near-Nernstian response. MIP/MAA membrane sensor was incorporated in flow-through cells and used as detectors for flow injection analysis (FIA) of DOX. The method has the requisite accuracy, sensitivity and precision to assay DOX in tablets and biological fluids.