38 resultados para Nonparametric regression techniques
em Instituto Politécnico do Porto, Portugal
Resumo:
Esta dissertação considera a importância da avaliação imobiliária no mercado imobiliário, nas mais diversas situações. Contudo, cinge-se à determinação de um presumível valor de transação para apartamentos, moradias, lojas e terrenos, para venda ou arrendamento. Os mercados imobiliários escolhidos são dois concelhos conhecidos, da autora, por ser mais fácil a perceção dos locais e preços de venda. Foi escolhido o Concelho de Valongo para apartamentos, moradias e terrenos e o Concelho da Maia para lojas. Para determinarmos os valores em estudo adotaram-se os métodos de avaliação imobiliária mais comuns nomeadamente: o Método Comparativo, Método do Rendimento e o Método do Custo. São apresentados os métodos de avaliação mais utilizados, descrevendo-se a aplicação de cada um deles e as suas condições necessárias. Fez-se uma comparação entre cada um o que permitiu concluir sobre os mesmos. A recolha dos imóveis objeto de estudo foi efetuada em Sites de empresas imobiliárias que dispunham de informação necessária ao âmbito do trabalho. Aplicaram-se os métodos a cada caso recolhido e posteriormente fez-se a comparação dos resultados obtidos. Através de tratamento estatístico, utilizaram-se as técnicas de regressão múltipla para análise de relações entre os métodos de avaliação aplicados. Por fim, retiraram-se conclusões sobre a relação existente entre os três métodos de avaliação.
Resumo:
It is widely accepted that organizations and individuals must be innovative and continually create new knowledge and ideas to deal with rapid change. Innovation plays an important role in not only the development of new business, process and products, but also in competitiveness and success of any organization. Technology for Creativity and Innovation: Tools, Techniques and Applications provides empirical research findings and best practices on creativity and innovation in business, organizational, and social environments. It is written for educators, academics and professionals who want to improve their understanding of creativity and innovation as well as the role technology has in shaping this discipline.
Resumo:
Objectivo: descrever a intervenção em fisioterapia numa paciente com diagnóstico de epicondilalgia. Participantes e Métodos: estudo de caso de uma paciente que desenvolveu um quadro doloroso no cotovelo esquerdo no início de Janeiro de 2010 e em que a intervenção de fisioterapia teve início no princípio de Fevereiro de 2010. Foi utilizada uma variedade de técnicas articulares, nomeadamente a mobilização com movimento de Mulligan, aplicação de tape e manipulação cervical. O tratamento foi realizado em dias alternados e teve a duração total de duas semanas. Resultados: logo no final da primeira sessão a paciente referiu melhoria na dor à preensão. Na segunda sessão a paciente demonstrou capacidade de realizar auto-mobilização com movimento em casa. A regressão dos sintomas foi muito rápida durante as duas primeiras sessões, passou por uma fase de estabilização da terceira à quinta sessão, até à completa remissão no fim da sexta sessão. Conclusão: o processo de raciocínio clínico desenvolvido pelo fisioterapeuta durante as seis sessões de tratamento foi salientado. Após a recolha dos dados relativos à história e sua interpretação levantaram-se as primeiras hipóteses: epicondilalgia, disfunção cervical ou sindroma do túnel radial. No exame objectivo foram realizados testes para permitir a obtenção do diagnóstico diferencial – epicondilalgia; elaborou-se então um plano de intervenção em colaboração a paciente, que se mostrou eficaz, com resultados acima das expectativas.
Resumo:
Long-term contractual decisions are the basis of an efficient risk management. However those types of decisions have to be supported with a robust price forecast methodology. This paper reports a different approach for long-term price forecast which tries to give answers to that need. Making use of regression models, the proposed methodology has as main objective to find the maximum and a minimum Market Clearing Price (MCP) for a specific programming period, and with a desired confidence level α. Due to the problem complexity, the meta-heuristic Particle Swarm Optimization (PSO) was used to find the best regression parameters and the results compared with the obtained by using a Genetic Algorithm (GA). To validate these models, results from realistic data are presented and discussed in detail.
Resumo:
The introduction of Electric Vehicles (EVs) together with the implementation of smart grids will raise new challenges to power system operators. This paper proposes a demand response program for electric vehicle users which provides the network operator with another useful resource that consists in reducing vehicles charging necessities. This demand response program enables vehicle users to get some profit by agreeing to reduce their travel necessities and minimum battery level requirements on a given period. To support network operator actions, the amount of demand response usage can be estimated using data mining techniques applied to a database containing a large set of operation scenarios. The paper includes a case study based on simulated operation scenarios that consider different operation conditions, e.g. available renewable generation, and considering a diversity of distributed resources and electric vehicles with vehicle-to-grid capacity and demand response capacity in a 33 bus distribution network.
Resumo:
This paper describes a methodology that was developed for the classification of Medium Voltage (MV) electricity customers. Starting from a sample of data bases, resulting from a monitoring campaign, Data Mining (DM) techniques are used in order to discover a set of a MV consumer typical load profile and, therefore, to extract knowledge regarding to the electric energy consumption patterns. In first stage, it was applied several hierarchical clustering algorithms and compared the clustering performance among them using adequacy measures. In second stage, a classification model was developed in order to allow classifying new consumers in one of the obtained clusters that had resulted from the previously process. Finally, the interpretation of the discovered knowledge are presented and discussed.
Resumo:
To comply with natural gas demand growth patterns and Europe´s import dependency, the gas industry needs to organize an efficient upstream infrastructure. The best location of Gas Supply Units – GSUs and the alternative transportation mode – by phisical or virtual pipelines, are the key of a successful industry. In this work we study the optimal location of GSUs, as well as determining the most efficient allocation from gas loads to sources, selecting the best transportation mode, observing specific technical restrictions and minimizing system total costs. For the location of GSUs on system we use the P-median problem, for assigning gas demands nodes to source facilities we use the classical transportation problem. The developed model is an optimisation-based approach, based on a Lagrangean heuristic, using Lagrangean relaxation for P-median problems – Simple Lagrangean Heuristic. The solution of this heuristic can be improved by adding a local search procedure - the Lagrangean Reallocation Heuristic. These two heuristics, Simple Lagrangean and Lagrangean Reallocation, were tested on a realistic network - the primary Iberian natural gas network, organized with 65 nodes, connected by physical and virtual pipelines. Computational results are presented for both approaches, showing the location gas sources and allocation loads arrangement, system total costs and gas transportation mode.
Resumo:
In recent years, Power Systems (PS) have experimented many changes in their operation. The introduction of new players managing Distributed Generation (DG) units, and the existence of new Demand Response (DR) programs make the control of the system a more complex problem and allow a more flexible management. An intelligent resource management in the context of smart grids is of huge important so that smart grids functions are assured. This paper proposes a new methodology to support system operators and/or Virtual Power Players (VPPs) to determine effective and efficient DR programs that can be put into practice. This method is based on the use of data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 32 bus distribution network.
Resumo:
The growing importance and influence of new resources connected to the power systems has caused many changes in their operation. Environmental policies and several well know advantages have been made renewable based energy resources largely disseminated. These resources, including Distributed Generation (DG), are being connected to lower voltage levels where Demand Response (DR) must be considered too. These changes increase the complexity of the system operation due to both new operational constraints and amounts of data to be processed. Virtual Power Players (VPP) are entities able to manage these resources. Addressing these issues, this paper proposes a methodology to support VPP actions when these act as a Curtailment Service Provider (CSP) that provides DR capacity to a DR program declared by the Independent System Operator (ISO) or by the VPP itself. The amount of DR capacity that the CSP can assure is determined using data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 33 bus distribution network.
Resumo:
Important research effort has been devoted to the topic of optimal planning of distribution systems. The non linear nature of the system, the need to consider a large number of scenarios and the increasing necessity to deal with uncertainties make optimal planning in distribution systems a difficult task. Heuristic techniques approaches have been proposed to deal with these issues, overcoming some of the inherent difficulties of classic methodologies. This paper considers several methodologies used to address planning problems of electrical power distribution networks, namely mixedinteger linear programming (MILP), ant colony algorithms (AC), genetic algorithms (GA), tabu search (TS), branch exchange (BE), simulated annealing (SA) and the Bender´s decomposition deterministic non-linear optimization technique (BD). Adequacy of theses techniques to deal with uncertainties is discussed. The behaviour of each optimization technique is compared from the point of view of the obtained solution and of the methodology performance. The paper presents results of the application of these optimization techniques to a real case of a 10-kV electrical distribution system with 201 nodes that feeds an urban area.
Resumo:
This paper consist in the establishment of a Virtual Producer/Consumer Agent (VPCA) in order to optimize the integrated management of distributed energy resources and to improve and control Demand Side Management DSM) and its aggregated loads. The paper presents the VPCA architecture and the proposed function-based organization to be used in order to coordinate the several generation technologies, the different load types and storage systems. This VPCA organization uses a frame work based on data mining techniques to characterize the costumers. The paper includes results of several experimental tests cases, using real data and taking into account electricity generation resources as well as consumption data.
Resumo:
Control Centre operators are essential to assure a good performance of Power Systems. Operators’ actions are critical in dealing with incidents, especially severe faults, like blackouts. In this paper we present an Intelligent Tutoring approach for training Portuguese Control Centre operators in incident analysis and diagnosis, and service restoration of Power Systems, offering context awareness and an easy integration in the working environment.
Resumo:
Objectivo: descrever a intervenção em fisioterapia num paciente com diagnóstico de conflito subacromial. Participantes e Métodos: estudo de caso de um paciente que desenvolveu um quadro doloroso no ombro direito no início de Janeiro de 2011 e em que a intervenção de fisioterapia teve início no princípio de Março de 2011. Foi utilizado como instrumentos de avaliação a EVA (repou-so, noite, e movimentos activos), a escala DASH, goniometria e raio x. Foi aplicado uma variedade de técnicas musculares, nomeadamente técnicas de indução miofasciais, exercícios terapêuticos, kinesiotape, bem como articulares, como a mobilização com movimento de Mulligan. O tratamento foi realizado em dias alternados e teve a duração total de seis semanas. Resultados: logo no final da primeira sessão o paciente referiu melhoria na dor e movimentos activos. Na segunda sessão o paci-ente demonstrou capacidade de realizar auto-mobilização, exercícios terapêuticos e alongamentos no domicílio. A regressão dos sintomas foi relativamente rápida, apenas na quarta sessão não obte-ve melhorias na reavaliação, até à completa remissão no fim da nona sessão. Conclusão: o processo de raciocínio clínico desenvolvido pelo fisioterapeuta durante de tratamento foi salientado. Após a recolha dos dados relativos à história e sua interpretação levantaram-se hipóteses o qual poderia estar na origem numa queixa do ombro com estas características. No exame objectivo foram reali-zados testes para permitir a obtenção do diagnóstico diferencial – conflito subacromial; elaborou-se então um plano de intervenção em colaboração com o paciente, nomeadamente com técnicas de terapia manual recentes, que se mostrou eficaz, com excelentes resultados.
Resumo:
Magnetic resonance (MR) imaging has been used to analyse and evaluate the vocal tract shape through different techniques and with promising results in several fields. Our purpose is to demonstrate the relevance of MR and image processing for the vocal tract study. The extraction of contours of the air cavities allowed the set - up of a number of 3D reconstruction image stacks by means of the combination of orthogonally oriented sets of slices for e ach articulatory gesture, as a new approach to solve the expected spatial under sampling of the imaging process. In result these models give improved information for the visualization of morphologic and anatomical aspects and are useful for partial measure ments of the vocal tract shape in different situations. Potential use can be found in Medical and therapeutic applications as well as in acoustic articulatory speech modelling.