22 resultados para Molecular testing
em Instituto Politécnico do Porto, Portugal
Resumo:
The principal aim of this study was to investigate the possibility of transference to Escherichia coli of β-lactam resistance genes found in bacteria isolated from ready-to-eat (RTE) Portuguese traditional food. From previous screenings, 128 β-lactam resistant isolates (from different types of cheese and of delicatessen meats), largely from the Enterobacteriaceae family were selected and 31.3% of them proved to transfer resistance determinants in transconjugation assays. Multiplex PCR in donor and transconjugant isolates did not detect bla CTX, bla SHV and bla OXY, but bla TEM was present in 85% of them, while two new TEMs (TEM-179 and TEM-180) were identified in two isolates. The sequencing of these amplicons showed identity between donor and transconjugant genes indicating in vitro plasmid DNA transfer. These results suggest that if there is an exchange of genes in natural conditions, the consumption of RTE foods, particularly with high levels of Enterobacteriaceae, can contribute to the spread of antibiotic resistance.
Resumo:
β-lactamases are hydrolytic enzymes that inactivate the β-lactam ring of antibiotics such as penicillins and cephalosporins. The major diversity of studies carried out until now have mainly focused on the characterization of β-lactamases recovered among clinical isolates of Gram-positive staphylococci and Gram-negative enterobacteria, amongst others. However, only some studies refer to the detection and development of β-lactamases carriers in healthy humans, sick animals, or even in strains isolated from environmental stocks such as food, water, or soils. Considering this, we proposed a 10-week laboratory programme for the Biochemistry and Molecular Biology laboratory for majors in the health, environmental, and agronomical sciences. During those weeks, students would be dealing with some basic techniques such as DNA extraction, bacterial transformation, polymerase chain reaction (PCR), gel electrophoresis, and the use of several bioinformatics tools. These laboratory exercises would be conducted as a mini research project in which all the classes would be connected with the previous ones. This curriculum was compared in an experiment involving two groups of students from two different majors. The new curriculum, with classes linked together as a mini research project, was taught to a major in Pharmacy and an old curriculum was taught to students from environmental health. The results showed that students who were enrolled in the new curriculum obtained better results in the final exam than the students who were enrolled in the former curriculum. Likewise, these students were found to be more enthusiastic during the laboratory classes than those from the former curriculum.
Resumo:
The relentless discovery of cancer biomarkers demands improved methods for their detection. In this work, we developed protein imprinted polymer on three-dimensional gold nanoelectrode ensemble (GNEE) to detect epithelial ovarian cancer antigen-125 (CA 125), a protein biomarker associated with ovarian cancer. CA 125 is the standard tumor marker used to follow women during or after treatment for epithelial ovarian cancer. The template protein CA 125 was initially incorporated into the thin-film coating and, upon extraction of protein from the accessible surfaces on the thin film, imprints for CA 125 were formed. The fabrication and analysis of the CA 125 imprinted GNEE was done by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The surfaces of the very thin, protein imprinted sites on GNEE are utilized for immunospecific capture of CA 125 molecules, and the mass of bound on the electrode surface can be detected as a reduction in the faradic current from the redox marker. Under optimal conditions, the developed sensor showed good increments at the studied concentration range of 0.5–400 U mL−1. The lowest detection limit was found to be 0.5 U mL−1. Spiked human blood serum and unknown real serum samples were analyzed. The presence of non-specific proteins in the serum did not significantly affect the sensitivity of our assay. Molecular imprinting using synthetic polymers and nanomaterials provides an alternative approach to the trace detection of biomarker proteins.
Resumo:
Molecularly imprinted polymers (MIP) were used as potentiometric sensors for the selective recognition and determination of chlormequat (CMQ). They were produced after radical polymerization of 4-vinyl pyridine (4-VP) or methacrylic acid (MAA) monomers in the presence of a cross-linker. CMQwas used as template. Similar nonimprinted (NI) polymers (NIP) were produced by removing the template from reaction media. The effect of kind and amount of MIP or NIP sensors on the potentiometric behavior was investigated. Main analytical features were evaluated in steady and flow modes of operation. The sensor MIP/4-VP exhibited the best performance, presenting fast near-Nernstian response for CMQover the concentration range 6.2×10-6 – 1.0×10-2 mol L-1 with detection limits of 4.1×10-6 mol L-1. The sensor was independent from the pH of test solutions in the range 5 – 10. Potentiometric selectivity coefficients of the proposed sensors were evaluated over several inorganic and organic cations. Results pointed out a good selectivity to CMQ. The sensor was applied to the potentiometric determination of CMQin commercial phytopharmaceuticals and spiked water samples. Recoveries ranged 96 to 108.5%.
Resumo:
Major depressive disorder (MDD) is a highly prevalent disorder, which has been associated with an abnormal response of the hypothalamus–pituitary–adrenal (HPA) axis. Reports have argued that an abnormal HPA axis response can be due to an altered P-Glycoprotein (P-GP) function. This argument suggests that genetic polymorphisms in ABCB1 may have an effect on the HPA axis activity; however, it is still not clear if this influences the risk of MDD. Our study aims to evaluate the effect of ABCB1 C1236T, G2677TA and C3435T genetic polymorphisms on MDD risk in a subset of Portuguese patients. DNA samples from 80 MDD patients and 160 control subjects were genotyped using TaqMan SNP Genotyping assays. A significant protection for MDD males carrying the T allele was observed (C1236T: odds ratio (OR) = 0.360, 95% confidence interval [CI]: [0.140– 0.950], p = 0.022; C3435T: OR= 0.306, 95% CI: [0.096–0.980], p = 0.042; and G2677TA: OR= 0.300, 95% CI: [0.100– 0.870], p = 0.013). Male Portuguese individuals carrying the 1236T/2677T/3435T haplotype had nearly 70% less risk of developing MDD (OR = 0.313, 95% CI: [0.118–0.832], p = 0.016, FDR p = 0.032). No significant differences were observed regarding the overall subjects. Our results suggest that genetic variability of the ABCB1 is associated with MDD development in male Portuguese patients. To the best of our knowledge, this is the first report in Caucasian samples to analyze the effect of these ABCB1 genetic polymorphisms on MDD risk.
Resumo:
Background: Temporal lobe epilepsy (TLE) is a neurological disorder that directly affects cortical areas responsible for auditory processing. The resulting abnormalities can be assessed using event-related potentials (ERP), which have high temporal resolution. However, little is known about TLE in terms of dysfunction of early sensory memory encoding or possible correlations between EEGs, linguistic deficits, and seizures. Mismatch negativity (MMN) is an ERP component – elicited by introducing a deviant stimulus while the subject is attending to a repetitive behavioural task – which reflects pre-attentive sensory memory function and reflects neuronal auditory discrimination and perceptional accuracy. Hypothesis: We propose an MMN protocol for future clinical application and research based on the hypothesis that children with TLE may have abnormal MMN for speech and non-speech stimuli. The MMN can be elicited with a passive auditory oddball paradigm, and the abnormalities might be associated with the location and frequency of epileptic seizures. Significance: The suggested protocol might contribute to a better understanding of the neuropsychophysiological basis of MMN. We suggest that in TLE central sound representation may be decreased for speech and non-speech stimuli. Discussion: MMN arises from a difference to speech and non-speech stimuli across electrode sites. TLE in childhood might be a good model for studying topographic and functional auditory processing and its neurodevelopment, pointing to MMN as a possible clinical tool for prognosis, evaluation, follow-up, and rehabilitation for TLE.
Resumo:
A pressão seletiva originada pelo uso excessivo de antimicrobianos na medicina humana e veterinária tem contribuído para a emergência de estirpes bacterianas multirresistentes, sendo os estudos mais escassos relativamente à sua presença nos animais de companhia. Porque os animais e os seus proprietários partilham o mesmo espaço habitacional, apresentando comportamentos de contacto próximo, existe uma hipótese elevada de transferência microbiana inter-espécie. Ante esta possibilidade é importante escrutinar o papel dos animais de companhia enquanto reservatórios de estirpes e de genes de resistência, bem como a sua envolvência na disseminação de estirpes bacterianas multirresistentes. Importa também, investigar o papel das superfícies e objetos domésticos partilhados por ambos, como potenciadores deste fenómeno. O objetivo deste trabalho foi, identificar o filogrupo e fazer a caracterização molecular dos genes que conferem resistência aos β-lactâmicos e às quinolonas, em quarenta isolados de Escherichia coli produtoras de β-lactamases de espectro alargado (ESBL), obtidas em zaragatoas fecais de cães consultados no Hospital Veterinário do ICBAS-UP. Complementarmente pretendeu-se inferir sobre a partilha de clones de Escherichia coli e Enterococcus spp. com elevadas resistências, em cinco agregados familiares (humanos e seus animais de companhia) assim como avaliar a potencial disseminação de estirpes multirresistentes no ambiente doméstico. Previamente foram recolhidas zaragatoas de fezes, pelo e mucosa oral dos animais e em alguns casos, dos seus proprietários, e ainda do ambiente doméstico. As zaragatoas foram processadas e as estirpes isoladas com base em meios seletivos. Foram realizados testes de suscetibilidade antimicrobiana de modo a estabelecer o fenótipo de resistência de cada isolado. O DNA foi extraído por varias metodologias e técnicas de PCR foram utilizadas para caracterização de filogrupos (Escherichia coli) e identificação da espécie (Enterococcus spp.). A avaliação da proximidade filogenética entre isolados foi efetuada por ERIC PCR e PFGE. No conjunto de quarenta isolados produtores de ESBL e/ou resistentes a quinolonas verificou-se que 47,5% pertenciam ao filogrupo A, havendo uma menor prevalência do filogrupo D (25,0%), B1 (17,5%), e B2 (10,0%).A frequência de resistência nestes isolados é factualmente elevada, sendo reveladora de uma elevada pressão seletiva. Com exceção de dois isolados, os fenótipos foram justificados pela presença de β-lactamases. A frequência da presença de genes foi: 47% blaTEM, 34% blaSHV, 24% blaOXA , 18% blaCTX-M-15, 8% blaCTX-M-2, 3% blaCTX-M-9. Nos isolados resistentes às quinolonas verificou-se maioritariamente a presença de mutações nos genes cromossomais gyrA e parC, e em alguns casos a presença de um determinante de resistência mediado por plasmídeo – qnrS. Nos cinco “agregados familiares” (humanos e animais) estudados foi observada uma partilha frequente de clones de E. coli e Enterococcus faecalis com múltiplas resistências, isolados em fezes e mucosa oral de cães e gatos e fezes e mãos dos respetivos proprietários, evidenciando-se assim uma possível transferência direta entre coabitantes (agregados A, C, D, E). Ficou também comprovado com percentagens de similaridade genotípica superiores a 94% que essa disseminação também ocorre para o ambiente doméstico, envolvendo objetos dos animais e de uso comum (agregados A, E). Os resultados obtidos reforçam a necessidade de um uso prudente dos antimicrobianos, pois elevados padrões de resistências terão um impacto não só na qualidade de vida dos animais mas também na saúde humana. Adicionalmente importa sensibilizar os proprietários para a necessidade de uma maior vigilância relativamente às formas de interação com os animais, bem como para a adoção de medidas higiénicas cautelares após essa mesma interação.
Resumo:
The TEM family of enzymes has had a crucial impact on the pharmaceutical industry due to their important role in antibiotic resistance. Even with the latest technologies in structural biology and genomics, no 3D structure of a TEM- 1/antibiotic complex is known previous to acylation. Therefore, the comprehension of their capability in acylate antibiotics is based on the protein macromolecular structure uncomplexed. In this work, molecular docking, molecular dynamic simulations, and relative free energy calculations were applied in order to get a comprehensive and thorough analysis of TEM-1/ampicillin and TEM-1/amoxicillin complexes. We described the complexes and analyzed the effect of ligand binding on the overall structure. We clearly demonstrate that the key residues involved in the stability of the ligand (hot-spots) vary with the nature of the ligand. Structural effects such as (i) the distances between interfacial residues (Ser70−Oγ and Lys73−Nζ, Lys73−Nζ and Ser130−Oγ, and Ser70−Oγ−Ser130−Oγ), (ii) side chain rotamer variation (Tyr105 and Glu240), and (iii) the presence of conserved waters can be also influenced by ligand binding. This study supports the hypothesis that TEM-1 suffers structural modifications upon ligand binding.
Resumo:
The hidden-node problem has been shown to be a major source of Quality-of-Service (QoS) degradation in Wireless Sensor Networks (WSNs) due to factors such as the limited communication range of sensor nodes, link asymmetry and the characteristics of the physical environment. In wireless contention-based Medium Access Control protocols, if two nodes that are not visible to each other transmit to a third node that is visible to the formers, there will be a collision – usually called hidden-node or blind collision. This problem greatly affects network throughput, energy-efficiency and message transfer delays, which might be particularly dramatic in large-scale WSNs. This technical report tackles the hidden-node problem in WSNs and proposes HNAMe, a simple yet efficient distributed mechanism to overcome it. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes and then scales to multiple clusters via a cluster grouping strategy that guarantees no transmission interference between overlapping clusters. We also show that the H-NAMe mechanism can be easily applied to the IEEE 802.15.4/ZigBee protocols with only minor add-ons and ensuring backward compatibility with the standard specifications. We demonstrate the feasibility of H-NAMe via an experimental test-bed, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. We believe that the results in this technical report will be quite useful in efficiently enabling IEEE 802.15.4/ZigBee as a WSN protocol.
Resumo:
In this work, an experimental study was performed on the influence of plug-filling, loading rate and temperature on the tensile strength of single-strap (SS) and double-strap (DS) repairs on aluminium structures. Whilst the main purpose of this work was to evaluate the feasibility of plug-filling for the strength improvement of these repairs, a parallel study was carried out to assess the sensitivity of the adhesive to external features that can affect the repairs performance, such as the rate of loading and environmental temperature. The experimental programme included repairs with different values of overlap length (L O = 10, 20 and 30 mm), and with and without plug-filling, whose results were interpreted in light of experimental evidence of the fracture modes and typical stress distributions for bonded repairs. The influence of the testing speed on the repairs strength was also addressed (considering 0.5, 5 and 25 mm/min). Accounting for the temperature effects, tests were carried out at room temperature (≈23°C), 50 and 80°C. This permitted a comparative evaluation of the adhesive tested below and above the glass transition temperature (T g), established by the manufacturer as 67°C. The combined influence of these two parameters on the repairs strength was also analysed. According to the results obtained from this work, design guidelines for repairing aluminium structures were
Resumo:
João Vinagre, Vasco Pinto and Ricardo Celestino contributed equally to the manuscript.
Resumo:
Background Gastric cancer remains a serious health concern worldwide. Patients would greatly benefit from the discovery of new biomarkers that predict outcome more accurately and allow better treatment and follow-up decisions. Here, we used a retrospective, observational study to assess the expression and prognostic value of the transcription factors SOX2 and CDX2 in gastric cancer. Methods SOX2, CDX2, MUC5AC and MUC2 expression were assessed in 201 gastric tumors by immunohistochemistry. SOX2 and CDX2 expression were crossed with clinicopathological and follow-up data to determine their impact on tumor behavior and outcome. Moreover, SOX2 locus copy number status was assessed by FISH (N = 21) and Copy Number Variation Assay (N = 62). Results SOX2 was expressed in 52% of the gastric tumors and was significantly associated with male gender, T stage and N stage. Moreover, SOX2 expression predicted poorer patient survival, and the combination with CDX2 defined two molecular phenotypes, SOX2+CDX2- versus SOX2-CDX2+, that predict the worst and the best long-term patients’ outcome. These profiles combined with clinicopathological parameters stratify the prognosis of patients with intestinal and expanding tumors and in those without signs of venous invasion. Finally, SOX2 locus copy number gains were found in 93% of the samples reaching the amplification threshold in 14% and significantly associating with protein expression. Conclusions We showed, for the first time, that SOX2 combined with CDX2 expression profile in gastric cancer segregate patients into different prognostic groups, complementing the clinicopathological information. We further demonstrate a molecular mechanism for SOX2 expression in a subset of gastric cancer cases.
Resumo:
Drug development represents a highly complex, inefficient and costly process. Over the past decade, the widespread use of nuclear imaging, owing to its functional and molecular nature, has proven to be a determinant in improving the efficiency in selecting the candidate drugs that should either be abandoned or moved forward into clinical trials. This helps not only with the development of safer and effective drugs but also with the shortening of time-to-market. The modern concept and future trends concerning molecular imaging will assumedly be hybrid or multimodality imaging, including combinations between high sensitivity and functional (molecular) modalities with high spatial resolution and morphological techniques.
Resumo:
Biomimetics has paved the way toward new materials and technologies inspired in Nature. Biomolecules and their supramolecular organization have today a leading role in biomimetics, benefiting from the recent advances in nanotechnology. The production of biomimetic materials may be however a difficult task, because Nature does it very well. The use of several building blocks assembled in bottom-up arrangement is without doubt at the core of this process. Such building blocks include different molecules or molecular arrangements, of synthetic or natural origin, such as amino acids, lipids, carbohydrates, nucleic acids, carbon allotropes, dendrimers, or organosilanes, among others. The most common approaches to produce synthetic biomimetic materials are reported herein, with special emphasis to building blocks and their supramolecular arrangement.
Resumo:
This work presents a novel surface Smart Polymer Antibody Material (SPAM) for Carnitine (CRT, a potential biomarker of ovarian cancer), tested for the first time as ionophore in potentiometric electrodes of unconventional configuration. The SPAM material consisted of a 3D polymeric network created by surface imprinting on graphene layers. The polymer was obtained by radical polymerization of (vinylbenzyl) trimethylammonium chloride and 4-styrenesulfonic acid (signaling the binding sites), and vinyl pivalate and ethylene glycol dimethacrylate (surroundings). Non-imprinted material (NIM) was prepared as control, by excluding the template from the procedure. These materials were then used to produce several plasticized PVC membranes, testing the relevance of including the SPAM as ionophore, and the need for a charged lipophilic additive. The membranes were casted over solid conductive supports of graphite or ITO/FTO. The effect of pH upon the potentiometric response was evaluated for different pHs (2-9) with different buffer compositions. Overall, the best performance was achieved for membranes with SPAM ionophore, having a cationic lipophilic additive and tested in HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer, pH 5.1. Better slopes were achieved when the membrane was casted on conductive glass (-57.4 mV/decade), while the best detection limits were obtained for graphite-based conductive supports (3.6 × 10−5mol/L). Good selectivity was observed against BSA, ascorbic acid, glucose, creatinine and urea, tested for concentrations up to their normal physiologic levels in urine. The application of the devices to the analysis of spiked samples showed recoveries ranging from 91% (± 6.8%) to 118% (± 11.2%). Overall, the combination of the SPAM sensory material with a suitable selective membrane composition and electrode design has lead to a promising tool for point-of-care applications.