82 resultados para Markov decision processes
em Instituto Politécnico do Porto, Portugal
Resumo:
Emotion although being an important factor in our every day life it is many times forgotten in the development of systems to be used by persons. In this work we present an architecture for a ubiquitous group decision support system able to support persons in group decision processes. The system considers the emotional factors of the intervenient participants, as well as the argumentation between them. Particular attention will be taken to one of components of this system: the multi-agent simulator, modeling the human participants, considering emotional characteristics, and allowing the exchanges of hypothetic arguments among the participants.
Resumo:
In the last years there has been a considerable increase in the number of people in need of intensive care, especially among the elderly, a phenomenon that is related to population ageing (Brown 2003). However, this is not exclusive of the elderly, as diseases as obesity, diabetes, and blood pressure have been increasing among young adults (Ford and Capewell 2007). As a new fact, it has to be dealt with by the healthcare sector, and particularly by the public one. Thus, the importance of finding new and cost effective ways for healthcare delivery are of particular importance, especially when the patients are not to be detached from their environments (WHO 2004). Following this line of thinking, a VirtualECare Multiagent System is presented in section 2, being our efforts centered on its Group Decision modules (Costa, Neves et al. 2007) (Camarinha-Matos and Afsarmanesh 2001).On the other hand, there has been a growing interest in combining the technological advances in the information society - computing, telecommunications and knowledge – in order to create new methodologies for problem solving, namely those that convey on Group Decision Support Systems (GDSS), based on agent perception. Indeed, the new economy, along with increased competition in today’s complex business environments, takes the companies to seek complementarities, in order to increase competitiveness and reduce risks. Under these scenarios, planning takes a major role in a company life cycle. However, effective planning depends on the generation and analysis of ideas (innovative or not) and, as a result, the idea generation and management processes are crucial. Our objective is to apply the GDSS referred to above to a new area. We believe that the use of GDSS in the healthcare arena will allow professionals to achieve better results in the analysis of one’s Electronically Clinical Profile (ECP). This attainment is vital, regarding the incoming to the market of new drugs and medical practices, which compete in the use of limited resources.
Resumo:
Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.
Resumo:
Decision Making is one of the most important activities of the human being. Nowadays decisions imply to consider many different points of view, so decisions are commonly taken by formal or informal groups of persons. Groups exchange ideas or engage in a process of argumentation and counter-argumentation, negotiate, cooperate, collaborate or even discuss techniques and/or methodologies for problem solving. Group Decision Making is a social activity in which the discussion and results consider a combination of rational and emotional aspects. In this paper we will present a Smart Decision Room, LAID (Laboratory of Ambient Intelligence for Decision Making). In LAID environment it is provided the support to meeting room participants in the argumentation and decision making processes, combining rational and emotional aspects.
Resumo:
There is an undeniable positive effect of innovation for both firms and the economy, with particular regards to the financial performance of firms. However, there is an important role of the decision making process for the allocation of resources to finance the innovation process. The aim of this paper is to understand what factors explain the decision making process in innovation activities of Portuguese firms. This is an empirical study, based on the modern theoretical approaches, which has relied on five key aspects for innovation: barriers, sources, cooperation, funding; and the decision making process. Primary data was collected through surveys to firms that have applied for innovation programmes within the Portuguese innovation agency. Univariate and multivariate statistical techniques were used. Our results suggest that the factors that mostly influence the Portuguese firms’ innovation decision-making processes are economical and financial (namely those related to profit increase and labour costs reduction).
Resumo:
In this paper we describe a casestudy of an experiment on how reflexivity and technology can enhance learning, by using ePorfolios as a training environment to develop translation skills. Translation is today a multiskilled job and translators need to assure their clients a good performance and quality, both in language and in technology domains. In order to accomplish it, for the translator all the tasks and processes he develops appear as crucial, being pretranslation and posttranslation processes equally important as the translation itself, namely as far as autonomy, reflexive and critical skills are concerned. Finally, the need and relevance for collaborative tasks and networks amongst virtual translation communities, led us to the decision of implementing ePortfolios as a tool to develop the requested skills and extend the use of Internet in translation, namely in terminology management phases, for the completion of each task, by helping students in the management of the projects deadlines, improving their knowledge on the construction and management of translation resources and deepening their awareness about the concepts related to the development and usability of ePorfolios.
Resumo:
With accelerated market volatility, faster response times and increased globalization, business environments are going through a major transformation and firms have intensified their search for strategies which can give them competitive advantage. This requires that companies continuously innovate, to think of new ideas that can be transformed or implemented as products, processes or services, generating value for the firm. Innovative solutions and processes are usually developed by a group of people, working together. A grouping of people that share and create new knowledge can be considered as a Community of Practice (CoP). CoP’s are places which provide a sound basis for organizational learning and encourage knowledge creation and acquisition. Virtual Communities of Practice (VCoP's) can perform a central role in promoting communication and collaboration between members who are dispersed in both time and space. Nevertheless, it is known that not all CoP's and VCoP's share the same levels of performance or produce the same results. This means that there are factors that enable or constrain the process of knowledge creation. With this in mind, we developed a case study in order to identify both the motivations and the constraints that members of an organization experience when taking part in the knowledge creating processes of VCoP's. Results show that organizational culture and professional and personal development play an important role in these processes. No interviewee referred to direct financial rewards as a motivation factor for participation in VCoPs. Most identified the difficulty in aligning objectives established by the management with justification for the time spent in the VCoP. The interviewees also said that technology is not a constraint.
Resumo:
Paper to be presented at the ESREA Conference Learning to Change? The Role of Identity and Learning Careers in Adult Education, 7-8 December, 2006, Université Catholique Louvain, Louvain–la-Neuve, Belgium
Resumo:
Translator’s training and assessment has used more and more tools and innovative strategies over the years. The goals and results to achieve haven’t changed much, however: translation quality. In order to accomplish it, the translator and all the tasks and processes he develops appear as crucial, being pre-translation and post-translation processes equally important as the translation itself, namely as far as autonomy, reflexive and critical skills are concerned. Finally, the need and relevance of collaborative tasks and networks amongst virtual translation communities, led us to the decision of implementing ePortfolios as a tool to develop the requested skills and extend the use of Internet in translation. In this paper we describe a case-study of a pilot experiment on the using of e-portfolios as a translation training tool and discuss their role in the definition of a clear set of objectives and phases for the completion of each task, by helping students in the management of the projects deadlines, improving their knowledge on the construction and management of translation resources and deepening their awareness about the concepts related to the development of eportfolios.
NCRF Nº 1 - estrutura e conteúdos das demosntrações financeiras e implicações fiscais e em auditoria
Resumo:
Dissertação apresentada ao Instituto obtenção do grau de Mestre em Auditoria orientador: Dr. Rodrigo Mário de Oliveira Carvalho
Resumo:
Dissertação para obtenção do Grau de Mestre em Contabilidade e Finanças Orientador: Doutora Cláudia Maria Ferreira Pereira Lopes
Resumo:
Orientada por: Prof. Doutora Cláudia Lopes
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM is integrated with ALBidS, a system that provides several dynamic strategies for agents’ behavior. This paper presents a method that aims at enhancing ALBidS competence in endowing market players with adequate strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible actions. These actions are defined accordingly to the most probable points of bidding success. With the purpose of accelerating the convergence process, a simulated annealing based algorithm is included.
Resumo:
This paper presents a Multi-Agent Market simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agents reactions.
Resumo:
This paper proposes a particle swarm optimization (PSO) approach to support electricity producers for multiperiod optimal contract allocation. The producer risk preference is stated by a utility function (U) expressing the tradeoff between the expectation and variance of the return. Variance estimation and expected return are based on a forecasted scenario interval determined by a price range forecasting model developed by the authors. A certain confidence level is associated to each forecasted scenario interval. The proposed model makes use of contracts with physical (spot and forward) and financial (options) settlement. PSO performance was evaluated by comparing it with a genetic algorithm-based approach. This model can be used by producers in deregulated electricity markets but can easily be adapted to load serving entities and retailers. Moreover, it can easily be adapted to the use of other type of contracts.