19 resultados para Magnetic levitation vehicles.
em Instituto Politécnico do Porto, Portugal
Resumo:
Ao longo deste projecto são efectuados vários passos para a realização de um sistema de levitação magnética controlado por computador. O objectivo deste projecto é a levitação de um objecto de material ferromagnético. Para a sua realização foi essencialmente necessário um electroíman, que exerce a força electromagnética sobre a bola, um circuito de potência para accionar o electroíman, um circuito sensor constituído por um LDR e por fim, o circuito constituído pelo PIC 18F4550. Para a comunicação entre o sistema e o PC foi estabelecida a comunicação série RS232. No que concerne ao controlo do sistema, foi aplicado um controlador PD e um controlador em avanço, ambos projectados directamente no domínio digital, através do método do Lugar de raízes. Posteriormente foi desenvolvida uma interface gráfica em ambiente MATLAB, para comunicação, via RS232, entre o PC e o sistema.
Resumo:
A levitação magnética tem sido um tema bastante investigado sobretudo devido à sua utilização em sistemas ferroviários de transportes. É o método ideal quando existe a necessidade em aplicações de restringir do contacto físico, ou a conveniência, em termos energéticos, de eliminar o atrito. O princípio de funcionamento é simples, um eletroíman cria uma força sobre um objeto ferromagnético que contraria a gravidade. Contudo um sistema de levitação por atração é instável e não linear, o que significa a necessidade de implementar um controlador para satisfazer as características de estabilidade desejadas. Ao longo deste projeto serão descritos os procedimentos teóricos e práticos que foram tomados na criação de um sistema de levitação eletromagnética. Desde a conceção física do sistema, como escolha do sensor, condicionamento de sinal ou construção do eletroíman, até aos procedimentos matemáticos que permitiram a modelação do sistema e criação de controladores. Os controladores clássicos, como o PID ou em avanço de fase, foram projetados através da técnica do Lugar Geométrico de Raízes. No projeto do controlador difuso, pelo contrário não se fez uso da modelação do sistema ou de qualquer relação matemática entre as variáveis. A utilização desta técnica de controlo destacou-se pela usa simplicidade e rapidez de implementação, fornecendo um bom desempenho ao sistema. Na parte final do relatório os resultados obtidos pelos diferentes métodos de controlo são analisados e apresentadas as respetivas conclusões. Estes resultados revelam que para este sistema, relativamente aos outros métodos, o controlador difuso apresenta o melhor desempenho tanto ao nível da resposta transitória, como em regime permanente.
Resumo:
Trabalho realizado para a disciplina de Dissertação, Projeto ou Estágio do Instituto Superior Técnico de Engenharia do Porto, no ano letivo de 2014/2015, com a proposta de Dissertação no âmbito da transição das convencionais vias de ferrovia para as vias de levitação magnética, como parte dos requisitos à obtenção dos ECTS necessários à classificação final. Propõe-se nesta dissertação a aplicação de um sistema de levitação magnética que resulta da evolução dos sistemas existentes. A proposta exposta é uma melhoria que consiste numa possibilidade teórica de o trilho conseguir através do magnetismo, aplicar uma rotação ao veículo necessária em curva e ajustar essa rotação à velocidade a que se desloca. Para que este sistema funcione sugere-se a introdução de mais um campo magnético no trilho, que tem como função rodar o veículo em curva e substituir a sobrelevação ou escala do convencional trilho. Sugere-se que este sistema seja aplicado no território brasileiro em três fases distintas. Ligando numa primeira fase as três maiores cidades, seguido do litoral e por fim o interior do Brasil. A aplicação deste sistema no Brasil pode apresentar ser a solução ideal, em termos de velocidade e conforto, contudo é um sistema que necessita de estudos mais aprofundados.
Resumo:
The large penetration of intermittent resources, such as solar and wind generation, involves the use of storage systems in order to improve power system operation. Electric Vehicles (EVs) with gridable capability (V2G) can operate as a means for storing energy. This paper proposes an algorithm to be included in a SCADA (Supervisory Control and Data Acquisition) system, which performs an intelligent management of three types of consumers: domestic, commercial and industrial, that includes the joint management of loads and the charge/discharge of EVs batteries. The proposed methodology has been implemented in a SCADA system developed by the authors of this paper – the SCADA House Intelligent Management (SHIM). Any event in the system, such as a Demand Response (DR) event, triggers the use of an optimization algorithm that performs the optimal energy resources scheduling (including loads and EVs), taking into account the priorities of each load defined by the installation users. A case study considering a specific consumer with several loads and EVs is presented in this paper.
Resumo:
Electric vehicles introduction will affect cities environment and urban mobility policies. Network system operators will have to consider the electric vehicles in planning and operation activities due to electric vehicles��� dependency on the electricity grid. The present paper presents test cases using an Electric Vehicle Scenario Simulator (EVeSSi) being developed by the authors. The test cases include two scenarios considering a 33 bus network with up to 2000 electric vehicles in the urban area. The scenarios consider a penetration of 10% of electric vehicles (200 of 2000), 30% (600) and 100% (2000). The first scenario will evaluate network impacts and the second scenario will evaluate CO2 emissions and fuel consumption.
Resumo:
The introduction of electricity markets and integration of Distributed Generation (DG) have been influencing the power system’s structure change. Recently, the smart grid concept has been introduced, to guarantee a more efficient operation of the power system using the advantages of this new paradigm. Basically, a smart grid is a structure that integrates different players, considering constant communication between them to improve power system operation and management. One of the players revealing a big importance in this context is the Virtual Power Player (VPP). In the transportation sector the Electric Vehicle (EV) is arising as an alternative to conventional vehicles propel by fossil fuels. The power system can benefit from this massive introduction of EVs, taking advantage on EVs’ ability to connect to the electric network to charge, and on the future expectation of EVs ability to discharge to the network using the Vehicle-to-Grid (V2G) capacity. This thesis proposes alternative strategies to control these two EV modes with the objective of enhancing the management of the power system. Moreover, power system must ensure the trips of EVs that will be connected to the electric network. The EV user specifies a certain amount of energy that will be necessary to charge, in order to ensure the distance to travel. The introduction of EVs in the power system turns the Energy Resource Management (ERM) under a smart grid environment, into a complex problem that can take several minutes or hours to reach the optimal solution. Adequate optimization techniques are required to accommodate this kind of complexity while solving the ERM problem in a reasonable execution time. This thesis presents a tool that solves the ERM considering the intensive use of EVs in the smart grid context. The objective is to obtain the minimum cost of ERM considering: the operation cost of DG, the cost of the energy acquired to external suppliers, the EV users payments and remuneration and penalty costs. This tool is directed to VPPs that manage specific network areas, where a high penetration level of EVs is expected to be connected in these areas. The ERM is solved using two methodologies: the adaptation of a deterministic technique proposed in a previous work, and the adaptation of the Simulated Annealing (SA) technique. With the purpose of improving the SA performance for this case, three heuristics are additionally proposed, taking advantage on the particularities and specificities of an ERM with these characteristics. A set of case studies are presented in this thesis, considering a 32 bus distribution network and up to 3000 EVs. The first case study solves the scheduling without considering EVs, to be used as a reference case for comparisons with the proposed approaches. The second case study evaluates the complexity of the ERM with the integration of EVs. The third case study evaluates the performance of scheduling with different control modes for EVs. These control modes, combined with the proposed SA approach and with the developed heuristics, aim at improving the quality of the ERM, while reducing drastically its execution time. The proposed control modes are: uncoordinated charging, smart charging and V2G capability. The fourth and final case study presents the ERM approach applied to consecutive days.
Resumo:
Magnetic resonance (MR) imaging has been used to analyse and evaluate the vocal tract shape through different techniques and with promising results in several fields. Our purpose is to demonstrate the relevance of MR and image processing for the vocal tract study. The extraction of contours of the air cavities allowed the set - up of a number of 3D reconstruction image stacks by means of the combination of orthogonally oriented sets of slices for e ach articulatory gesture, as a new approach to solve the expected spatial under sampling of the imaging process. In result these models give improved information for the visualization of morphologic and anatomical aspects and are useful for partial measure ments of the vocal tract shape in different situations. Potential use can be found in Medical and therapeutic applications as well as in acoustic articulatory speech modelling.
Resumo:
The first and second authors would like to thank the support of the PhD grants with references SFRH/BD/28817/2006 and SFRH/PROTEC/49517/2009, respectively, from Fundação para a Ciência e Tecnol ogia (FCT). This work was partially done in the scope of the project “Methodologies to Analyze Organs from Complex Medical Images – Applications to Fema le Pelvic Cavity”, wi th reference PTDC/EEA- CRO/103320/2008, financially supported by FCT.
Resumo:
This paper is a contribution for the assessment and comparison of magnet properties based on magnetic field characteristics particularly concerning the magnetic induction uniformity in the air gaps. For this aim, a solver was developed and implemented to determine the magnetic field of a magnetic core to be used in Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry. The electromagnetic field computation is based on a 2D finite-element method (FEM) using both the scalar and the vector potential formulation. Results for the magnetic field lines and the magnetic induction vector in the air gap are presented. The target magnetic induction is 0.2 T, which is a typical requirement of the FFC NMR technique, which can be achieved with a magnetic core based on permanent magnets or coils. In addition, this application requires high magnetic induction uniformity. To achieve this goal, a solution including superconducting pieces is analyzed. Results are compared with a different FEM program.
Resumo:
The economical and environment impacts of fossil energies increased the interest for hybrid, battery and fuel-cell electric vehicles. Several demanding engineering challenges must be faced, motivated by different physical domains integration. This paper aims to present an overview on hybrid (HEV) and electric vehicles (EV) basic structures and features. In addition, it will try to point out some of the most relevant challenges to overcome for HEV and EV may be a solid option for the mobility issue. New developments in energy storage devices and energy management systems (EMS) are crucial to achieve this goal.
Resumo:
The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and V2G. The main focus is the comparison of different EV management approaches in the day-ahead energy resources management, namely uncontrolled charging, smart charging, V2G and Demand Response (DR) programs i n the V2G approach. Three different DR programs are designed and tested (trip reduce, shifting reduce and reduce+shifting). Othe r important contribution of the paper is the comparison between deterministic and computational intelligence techniques to reduce the execution time. The proposed scheduling is solved with a modified particle swarm optimization. Mixed integer non-linear programming is also used for comparison purposes. Full ac power flow calculation is included to allow taking into account the network constraints. A case study with a 33-bus distribution network and 2000 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
The massification of electric vehicles (EVs) can have a significant impact on the power system, requiring a new approach for the energy resource management. The energy resource management has the objective to obtain the optimal scheduling of the available resources considering distributed generators, storage units, demand response and EVs. The large number of resources causes more complexity in the energy resource management, taking several hours to reach the optimal solution which requires a quick solution for the next day. Therefore, it is necessary to use adequate optimization techniques to determine the best solution in a reasonable amount of time. This paper presents a hybrid artificial intelligence technique to solve a complex energy resource management problem with a large number of resources, including EVs, connected to the electric network. The hybrid approach combines simulated annealing (SA) and ant colony optimization (ACO) techniques. The case study concerns different EVs penetration levels. Comparisons with a previous SA approach and a deterministic technique are also presented. For 2000 EVs scenario, the proposed hybrid approach found a solution better than the previous SA version, resulting in a cost reduction of 1.94%. For this scenario, the proposed approach is approximately 94 times faster than the deterministic approach.
Resumo:
In the smart grids context, distributed energy resources management plays an important role in the power systems’ operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important to develop adequate methodologies to schedule the electric vehicles��� charge and discharge processes, avoiding network congestions and providing ancillary services. This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting into the network. These programs are included in an energy resources management algorithm which integrates the management of other resources. The paper presents a case study considering a 37-bus distribution network with 25 distributed generators, 1908 consumers, and 2430 plug-in vehicles. Two scenarios are tested, namely a scenario with high photovoltaic generation, and a scenario without photovoltaic generation. A sensitivity analyses is performed in order to evaluate when each energy resource is required.
Resumo:
The use of Electric Vehicles (EVs) will change significantly the planning and management of power systems in a near future. This paper proposes a real-time tariff strategy for the charge process of the EVs. The main objective is to evaluate the influence of real-time tariffs in the EVs owners’ behaviour and also the impact in load diagram. The paper proposes the energy price variation according to the relation between wind generation and power consumption. The proposed strategy was tested in two different days in the Danish power system. January 31st and August 13th 2013 were selected because of the high quantities of wind generation. The main goal is to evaluate the changes in the EVs charging diagram with the energy price preventing wind curtailment.
Resumo:
Energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and of massive electric vehicle is envisaged. The present paper proposes a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and Vehicle-to-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with their owners. It takes into account these contracts, the users' requirements subjected to the VPP, and several discharge price steps. The full AC power flow calculation included in the model takes into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33-bus distribution network and V2G is used to illustrate the good performance of the proposed method.