74 resultados para Intelligence process

em Instituto Politécnico do Porto, Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the time goes on, it is a question of common sense to involve in the process of decision making people scattered around the globe. Groups are created in a formal or informal way, exchange ideas or engage in a process of argumentation and counterargumentation, negotiate, cooperate, collaborate or even discuss techniques and/or methodologies for problem solving. In this work it is proposed an agent-based architecture to support a ubiquitous group decision support system, i.e. based on the concept of agent, which is able to exhibit intelligent, and emotional-aware behaviour, and support argumentation, through interaction with individual persons or groups. It is enforced the paradigm of Mixed Initiative Systems, so the initiative is to be pushed by human users and/or intelligent agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decision Making is one of the most important activities of the human being. Nowadays decisions imply to consider many different points of view, so decisions are commonly taken by formal or informal groups of persons. Groups exchange ideas or engage in a process of argumentation and counter-argumentation, negotiate, cooperate, collaborate or even discuss techniques and/or methodologies for problem solving. Group Decision Making is a social activity in which the discussion and results consider a combination of rational and emotional aspects. In this paper we will present a Smart Decision Room, LAID (Laboratory of Ambient Intelligence for Decision Making). In LAID environment it is provided the support to meeting room participants in the argumentation and decision making processes, combining rational and emotional aspects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vivemos cada vez mais numa era de crescentes avanços tecnológicos em diversas áreas. O que há uns anos atrás era considerado como praticamente impossível, em muitos dos casos, já se tornou realidade. Todos usamos tecnologias como, por exemplo, a Internet, Smartphones e GPSs de uma forma natural. Esta proliferação da tecnologia permitiu tanto ao cidadão comum como a organizações a sua utilização de uma forma cada vez mais criativa e simples de utilizar. Além disso, a cada dia que passa surgem novos negócios e startups, o que demonstra o dinamismo que este crescimento veio trazer para a indústria. A presente dissertação incide sobre duas áreas em forte crescimento: Reconhecimento Facial e Business Intelligence (BI), assim como a respetiva combinação das duas com o objetivo de ser criado um novo módulo para um produto já existente. Tratando-se de duas áreas distintas, é primeiramente feito um estudo sobre cada uma delas. A área de Business Intelligence é vocacionada para organizações e trata da recolha de informação sobre o negócio de determinada empresa, seguindo-se de uma posterior análise. A grande finalidade da área de Business Intelligence é servir como forma de apoio ao processo de tomada de decisão por parte dos analistas e gestores destas organizações. O Reconhecimento Facial, por sua vez, encontra-se mais presente na sociedade. Tendo surgido no passado através da ficção científica, cada vez mais empresas implementam esta tecnologia que tem evoluído ao longo dos anos, chegando mesmo a ser usada pelo consumidor final, como por exemplo em Smartphones. As suas aplicações são, portanto, bastante diversas, desde soluções de segurança até simples entretenimento. Para estas duas áreas será assim feito um estudo com base numa pesquisa de publicações de autores da respetiva área. Desde os cenários de utilização, até aspetos mais específicos de cada uma destas áreas, será assim transmitido este conhecimento para o leitor, o que permitirá uma maior compreensão por parte deste nos aspetos relativos ao desenvolvimento da solução. Com o estudo destas duas áreas efetuado, é então feita uma contextualização do problema em relação à área de atuação da empresa e quais as abordagens possíveis. É também descrito todo o processo de análise e conceção, assim como o próprio desenvolvimento numa vertente mais técnica da solução implementada. Por fim, são apresentados alguns exemplos de resultados obtidos já após a implementação da solução.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O crescente interesse pela área de Business Intelligence (BI) tem origem no reconhecimento da sua importância pelas organizações, como poderoso aliado dos processos de tomada de decisão. O BI é um conceito dinâmico, que se amplia à medida que são integradas novas ferramentas, em resposta a necessidades emergentes dos mercados. O BI não constitui, ainda, uma realidade nas pequenas e médias empresas, sendo, até, desconhecido para muitas. São, essencialmente, as empresas de maior dimensão, com presença em diferentes mercados e/ou áreas de negócio mais abrangentes, que recorrem a estas soluções. A implementação de ferramentas BI nas organizações depende, pois, das especificidades destas, sendo fundamental que a informação sobre as plataformas disponíveis e suas funcionalidades seja objetiva e inequívoca. Só uma escolha correta, que responda às necessidades da área de negócio desenvolvida, permitirá obter dados que resultem em ganhos, potenciando a vantagem competitiva empresarial. Com este propósito, efectua-se, na presente dissertação, uma análise comparativa das funcionalidades existentes em diversas ferramentas BI, que se pretende que venha auxiliar os processos de seleção da plataforma BI mais adaptada a cada organização e/ou negócio. As plataformas BI enquadram-se em duas grandes vertentes, as que implicam custos de aquisição, de índole comercial, e as disponibilizadas de forma livre, ou em código aberto, designadas open source. Neste sentido, equaciona-se se estas últimas podem constituir uma opção válida para as empresas com recursos mais escassos. Num primeiro momento, procede-se à implementação de tecnologias BI numa organização concreta, a operar na indústria de componentes automóveis, a Yazaki Saltano de Ovar Produtos Eléctricos, Ltd., implantada em Portugal há mais de 25 anos. Para esta empresa, o desenvolvimento de soluções com recurso a ferramentas BI afigura-se como um meio adequado de melhorar o acompanhamento aos seus indicadores de performance. Este processo concretizou-se a partir da stack tecnológica pré-existente na organização, a plataforma BI comercial da Microsoft. Com o objetivo de, por um lado, reunir contributos que possibilitem elucidar as organizações na escolha da plataforma BI mais adequada e, por outro, compreender se as plataformas open source podem constituir uma alternativa credível às plataformas comerciais, procedeu-se a uma pesquisa comparativa das funcionalidades das várias plataformas BI open source. Em resultado desta análise, foram selecionadas duas plataformas, a SpagoBI e a PentahoBI, utilizadas na verificação do potencial alternativo das open source face às plataformas comerciais. Com base nessas plataformas, reproduziu-se os processos e procedimentos desenvolvidos no âmbito do projeto de implementação BI realizado na empresa Yazaki Saltano.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article discusses the application of Information and Communication Technologies and strategies for best practices in order to capture and maintain faculty students' attention. It is based on a case study of ten years, using a complete information system. This system, in addition to be considered an ERP, to support the activities of academic management, also has a strong component of SRM that provides support to academic and administrative activities. It describes the extent to which the presented system facilitates the interaction and communication between members of the academic community, using the Internet, with services available on the Web complementing them with email, SMS and CTI. Through a perception, backed by empirical analysis and results of investigations, it demonstrates how this type of practice may raise the level of satisfaction of the community. In particular, it is possible to combat failure at school, avoid that students leave their course before its completion and also that they recommend them to potential students. In addition, such a strategy also allows strong economies in the management of the institution, increasing its value. As future work, we present the new phase of the project towards implementation of Business Intelligence to optimize the management process, making it proactive. The technological vision that guides new developments to a construction based on Web services and procedural languages is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communities of Practice are places which provide a sound basis for organizational learning, enabling knowledge creation and acquisition thus improving organizational performance, leveraging innovation and consequently increasing competitively. Virtual Communities of Practice (VCoP‟s) can perform a central role in promoting communication and collaboration between members who are dispersed in both time and space. The ongoing case study, described here, aims to identify both the motivations and the constraints that members of an organization experience when taking part in the knowledge creating processes of the VCoP‟s to which they belong. Based on a literature review, we have identified several factors that influence such processes; they will be used to analyse the results of interviews carried out with the leaders of VCoP‟s in four multinationals. As future work, a questionnaire will be developed and administered to the other members of these VCoP‟s

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Business Intelligence (BI) is one emergent area of the Decision Support Systems (DSS) discipline. Over the last years, the evolution in this area has been considerable. Similarly, in the last years, there has been a huge growth and consolidation of the Data Mining (DM) field. DM is being used with success in BI systems, but a truly DM integration with BI is lacking. Therefore, a lack of an effective usage of DM in BI can be found in some BI systems. An architecture that pretends to conduct to an effective usage of DM in BI is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimal power flow problem has been widely studied in order to improve power systems operation and planning. For real power systems, the problem is formulated as a non-linear and as a large combinatorial problem. The first approaches used to solve this problem were based on mathematical methods which required huge computational efforts. Lately, artificial intelligence techniques, such as metaheuristics based on biological processes, were adopted. Metaheuristics require lower computational resources, which is a clear advantage for addressing the problem in large power systems. This paper proposes a methodology to solve optimal power flow on economic dispatch context using a Simulated Annealing algorithm inspired on the cooling temperature process seen in metallurgy. The main contribution of the proposed method is the specific neighborhood generation according to the optimal power flow problem characteristics. The proposed methodology has been tested with IEEE 6 bus and 30 bus networks. The obtained results are compared with other wellknown methodologies presented in the literature, showing the effectiveness of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power system planning, control and operation require an adequate use of existing resources as to increase system efficiency. The use of optimal solutions in power systems allows huge savings stressing the need of adequate optimization and control methods. These must be able to solve the envisaged optimization problems in time scales compatible with operational requirements. Power systems are complex, uncertain and changing environments that make the use of traditional optimization methodologies impracticable in most real situations. Computational intelligence methods present good characteristics to address this kind of problems and have already proved to be efficient for very diverse power system optimization problems. Evolutionary computation, fuzzy systems, swarm intelligence, artificial immune systems, neural networks, and hybrid approaches are presently seen as the most adequate methodologies to address several planning, control and operation problems in power systems. Future power systems, with intensive use of distributed generation and electricity market liberalization increase power systems complexity and bring huge challenges to the forefront of the power industry. Decentralized intelligence and decision making requires more effective optimization and control techniques techniques so that the involved players can make the most adequate use of existing resources in the new context. The application of computational intelligence methods to deal with several problems of future power systems is presented in this chapter. Four different applications are presented to illustrate the promises of computational intelligence, and illustrate their potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyber-Physical Intelligence is a new concept integrating Cyber-Physical Systems and Intelligent Systems. The paradigm is centered in incorporating intelligent behavior in cyber-physical systems, until now too oriented to the operational technological aspects. In this paper we will describe the use of Cyber-Physical Intelligence in the context of Power Systems, namely in the use of Intelligent SCADA (Supervisory Control and Data Acquisition) systems at different levels of the Power System, from the Power Generation, Transmission, and Distribution Control Centers till the customers houses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a swarm intelligence long-term hedging tool to support electricity producers in competitive electricity markets. This tool investigates the long-term hedging opportunities available to electric power producers through the use of contracts with physical (spot and forward) and financial (options) settlement. To find the optimal portfolio the producer risk preference is stated by a utility function (U) expressing the trade-off between the expectation and the variance of the return. Variance estimation and the expected return are based on a forecasted scenario interval determined by a long-term price range forecast model, developed by the authors, whose explanation is outside the scope of this paper. The proposed tool makes use of Particle Swarm Optimization (PSO) and its performance has been evaluated by comparing it with a Genetic Algorithm (GA) based approach. To validate the risk management tool a case study, using real price historical data for mainland Spanish market, is presented to demonstrate the effectiveness of the proposed methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies Optimal Intelligent Supervisory Control System (OISCS) model for the design of control systems which can work in the presence of cyber-physical elements with privacy protection. The development of such architecture has the possibility of providing new ways of integrated control into systems where large amounts of fast computation are not easily available, either due to limitations on power, physical size or choice of computing elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes a new approach in the Intelligent Training of Operators in Power Systems Control Centres, considering the new reality of Renewable Sources, Distributed Generation, and Electricity Markets, under the emerging paradigms of Cyber-Physical Systems and Ambient Intelligence. We propose Intelligent Tutoring Systems as the approach to deal with the intelligent training of operators in these new circumstances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control Centre operators are essential to assure a good performance of Power Systems. Operators’ actions are critical in dealing with incidents, especially severe faults, like blackouts. In this paper we present an Intelligent Tutoring approach for training Portuguese Control Centre operators in incident analysis and diagnosis, and service restoration of Power Systems, offering context awareness and an easy integration in the working environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the optimal involvement in derivatives electricity markets of a power producer to hedge against the pool price volatility. To achieve this aim, a swarm intelligence meta-heuristic optimization technique for long-term risk management tool is proposed. This tool investigates the long-term opportunities for risk hedging available for electric power producers through the use of contracts with physical (spot and forward contracts) and financial (options contracts) settlement. The producer risk preference is formulated as a utility function (U) expressing the trade-off between the expectation and the variance of the return. Variance of return and the expectation are based on a forecasted scenario interval determined by a long-term price range forecasting model. This model also makes use of particle swarm optimization (PSO) to find the best parameters allow to achieve better forecasting results. On the other hand, the price estimation depends on load forecasting. This work also presents a regressive long-term load forecast model that make use of PSO to find the best parameters as well as in price estimation. The PSO technique performance has been evaluated by comparison with a Genetic Algorithm (GA) based approach. A case study is presented and the results are discussed taking into account the real price and load historical data from mainland Spanish electricity market demonstrating the effectiveness of the methodology handling this type of problems. Finally, conclusions are dully drawn.