14 resultados para Indoor smoking ban

em Instituto Politécnico do Porto, Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traffic emissions and tobacco smoke are considered two main sources of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air. In this study, the impact of these sources on the level of fine particulate matter (PM2.5) and on the distribution of 15 PAHs regarded as priority pollutants by the US-EPA on PM2.5 were evaluated and compared. Outdoor and indoor PM2.5 samples were collected during winter 2008 in Oporto city in Portugal, for sampling periods of 12 and 24 hours, respectively. The outdoor PM2.5 were sampled at one site directly influenced by traffic emissions and the indoor PM2.5 samples were collected at one home directly influenced by tobacco smoke and another one without smoke. A methodology based on microwave-assisted extraction and liquid chromatography with fluorescence detection was applied for the efficient PAHs determination in indoor and outdoor PM2.5. PAHs in indoor PM2.5 concentrations were significantly influenced by the presence of traffic and tobacco smoking emissions. The mean of ΣPAHs in the outdoor traffic PM2.5 was not significantly different from the value attained in the indoor without smoking site. The tobacco smoke increased significantly PAHs concentrations on average about 1000 times more, when compared with the outdoor profile samples suggesting that tobacco smoking may be the most important source of indoor PAHs pollution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of the mutagenic and/or carcinogenic properties, Polycyclic Aromatic Hydrocarbons (PAH), have a direct impact on human population. Consequently, there is a widespread interest in analysing and evaluating the exposure to PAH in different indoor environments, influenced by different emission sources. The information on indoor PAH is still limited, mainly in terms of PAH distribution in indoor particles of different sizes; thus, this study evaluated the influence of tobacco smoke on PM10 and PM2.5 characteristics, namely on their PAH compositions, with further aim to understand the negative impact of tobacco smoke on human health. Samples were collected at one site influenced by tobacco smoke and at one reference (non-smoking) site using low-volume samplers; the analyses of 17 PAH were performed by Microwave Assisted Extraction combined with Liquid Chromatography (MAE–LC). At the site influenced by tobacco smoke PM concentrations were higher 650% for PM10, and 720% for PM2.5. When influenced by smoking, 4 ring PAH (fluoranthene, pyrene, and chrysene) were the most abundant PAH, with concentrations 4600–21 000% and 5100–20 800% higher than at the reference site for PM10 and PM2.5, respectively, accounting for 49% of total PAH (SPAH). Higher molecular weight PAH (5–6 rings) reached concentrations 300–1300% and 140–1700% higher for PM10 and PM2.5, respectively, at the site influenced by tobacco smoke. Considering 9 carcinogenic PAH this increase was 780% and 760% in PM10 and PM2.5, respectively, indicating the strong potential risk for human health. As different composition profiles of PAH in indoor PM were obtained for reference and smoking sites, those 9 carcinogens represented at the reference site 84% and 86% of SPAH in PM10 and PM2.5, respectively, and at the smoking site 56% and 55% of SPAH in PM10 and PM2.5, respectively. All PAH (including the carcinogenic ones) were mainly present in fine particles, which corresponds to a strong risk for cardiopulmonary disease and lung cancer; thus, these conclusions are relevant for the development of strategies to protect public health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evaluation of benzene in different environments such as indoor (with and without tobacco smoke), a city area, countryside, gas stations and near exhaust pipes from cars running on different types of fuels was performed. The samples were analyzed using gas chromatography (GC) with flame ionization detection (FID) and tandem mass spectrometric detection (MS/MS) (to confirm the identification of benzene in the air samples). Operating conditions for the GC-MS analysis were optimized as well as the sampling and sample preparation. The results obtained in this work indicate that i) the type of fuel directly influences the benzene concentration in the air. Gasoline with additives provided the highest amount of benzene followed by unleaded gasoline and diesel; ii) the benzene concentration in the gas station was always higher than the advisable limit established by law (5 μg m−3) and during the unloading of gasoline the achieved concentration was 8371 μg m−3; iii) the data from the countryside (Taliscas) and the urban city (Matosinhos) were below 5 μg m−3 except 5 days after a fire on a petroleum refinery plant located near the city; iv) it was proven that in coffee shops where smoking is allowed the benzene concentration is higher (6 μg m−3) than in coffee shops where this is forbidden (4 μg m−3). This method may also be helpful for environmental analytical chemists who use GC-MS/MS for the confirmation or/and quantification of benzene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As polycyclic aromatic hydrocarbons (PAHs) have a negative impact on human health due to their mutagenic and/or carcinogenic properties, the objective of this work was to study the influence of tobacco smoke on levels and phase distribution of PAHs and to evaluate the associated health risks. The air samples were collected at two homes; 18 PAHs (the 16 PAHs considered by U.S. EPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) were determined in gas phase and associated with thoracic (PM10) and respirable (PM2.5) particles. At home influenced by tobacco smoke the total concentrations of 18 PAHs in air ranged from 28.3 to 106 ngm 3 (mean of 66.7 25.4 ngm 3),∑PAHs being 95% higher than at the non-smoking one where the values ranged from 17.9 to 62.0 ngm 3 (mean of 34.5 16.5 ngm 3). On average 74% and 78% of ∑PAHs were present in gas phase at the smoking and non-smoking homes, respectively, demonstrating that adequate assessment of PAHs in air requires evaluation of PAHs in both gas and particulate phases. When influenced by tobacco smoke the health risks values were 3.5e3.6 times higher due to the exposure of PM10. The values of lifetime lung cancer risks were 4.1 10 3 and 1.7 10 3 for the smoking and nonsmoking homes, considerably exceeding the health-based guideline level at both homes also due to the contribution of outdoor traffic emissions. The results showed that evaluation of benzo[a]pyrene alone would probably underestimate the carcinogenic potential of the studied PAH mixtures; in total ten carcinogenic PAHs represented 36% and 32% of the gaseous ∑PAHs and in particulate phase they accounted for 75% and 71% of ∑PAHs at the smoking and non-smoking homes, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering tobacco smoke as one of the most health-relevant indoor sources, the aim of this work was to further understand its negative impacts on human health. The specific objectives of this work were to evaluate the levels of particulate-bound PAHs in smoking and non-smoking homes and to assess the risks associated with inhalation exposure to these compounds. The developed work concerned the application of the toxicity equivalency factors approach (including the estimation of the lifetime lung cancer risks, WHO) and the methodology established by USEPA (considering three different age categories) to 18 PAHs detected in inhalable (PM10) and fine (PM2.5) particles at two homes. The total concentrations of 18 PAHs (ΣPAHs) was 17.1 and 16.6 ng m−3 in PM10 and PM2.5 at smoking home and 7.60 and 7.16 ng m−3 in PM10 and PM2.5 at non-smoking one. Compounds with five and six rings composed the majority of the particulate PAHs content (i.e., 73 and 78 % of ΣPAHs at the smoking and non-smoking home, respectively). Target carcinogenic risks exceeded USEPA health-based guideline at smoking home for 2 different age categories. Estimated values of lifetime lung cancer risks largely exceeded (68–200 times) the health-based guideline levels at both homes thus demonstrating that long-term exposure to PAHs at the respective levels would eventually cause risk of developing cancer. The high determined values of cancer risks in the absence of smoking were probably caused by contribution of PAHs from outdoor sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indoor location systems cannot rely on technologies such as GPS (Global Positioning System) to determine the position of a mobile terminal, because its signals are blocked by obstacles such as walls, ceilings, roofs, etc. In such environments. The use of alternative techniques, such as the use of wireless networks, should be considered. The location estimation is made by measuring and analysing one of the parameters of the wireless signal, usually the received power. One of the techniques used to estimate the locations using wireless networks is fingerprinting. This technique comprises two phases: in the first phase data is collected from the scenario and stored in a database; the second phase consists in determining the location of the mobile node by comparing the data collected from the wireless transceiver with the data previously stored in the database. In this paper an approach for localisation using fingerprinting based on Fuzzy Logic and pattern searching is presented. The performance of the proposed approach is compared with the performance of classic methods, and it presents an improvement between 10.24% and 49.43%, depending on the mobile node and the Fuzzy Logic parameters.ł

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel approach to WLAN propagation models for use in indoor localization. The major goal of this work is to eliminate the need for in situ data collection to generate the Fingerprinting map, instead, it is generated by using analytical propagation models such as: COST Multi-Wall, COST 231 average wall and Motley- Keenan. As Location Estimation Algorithms kNN (K-Nearest Neighbour) and WkNN (Weighted K-Nearest Neighbour) were used to determine the accuracy of the proposed technique. This work is based on analytical and measurement tools to determine which path loss propagation models are better for location estimation applications, based on Receive Signal Strength Indicator (RSSI).This study presents different proposals for choosing the most appropriate values for the models parameters, like obstacles attenuation and coefficients. Some adjustments to these models, particularly to Motley-Keenan, considering the thickness of walls, are proposed. The best found solution is based on the adjusted Motley-Keenan and COST models that allows to obtain the propagation loss estimation for several environments.Results obtained from two testing scenarios showed the reliability of the adjustments, providing smaller errors in the measured values values in comparison with the predicted values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fingerprinting is an indoor location technique, based on wireless networks, where data stored during the offline phase is compared with data collected by the mobile device during the online phase. In most of the real-life scenarios, the mobile node used throughout the offline phase is different from the mobile nodes that will be used during the online phase. This means that there might be very significant differences between the Received Signal Strength values acquired by the mobile node and the ones stored in the Fingerprinting Map. As a consequence, this difference between RSS values might contribute to increase the location estimation error. One possible solution to minimize these differences is to adapt the RSS values, acquired during the online phase, before sending them to the Location Estimation Algorithm. Also the internal parameters of the Location Estimation Algorithms, for example the weights of the Weighted k-Nearest Neighbour, might need to be tuned for every type of terminal. This paper focuses both approaches, using Direct Search optimization methods to adapt the Received Signal Strength and to tune the Location Estimation Algorithm parameters. As a result it was possible to decrease the location estimation error originally obtained without any calibration procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a step count algorithm designed to work in real-time using low computational power. This proposal is our first step for the development of an indoor navigation system, based on Pedestrian Dead Reckoning (PDR). We present two approaches to solve this problem and compare them based in their error on step counting, as well as, the capability of their use in a real time system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an ankle mounted Inertial Navigation System (INS) used to estimate the distance traveled by a pedestrian. This distance is estimated by the number of steps given by the user. The proposed method is based on force sensors to enhance the results obtained from an INS. Experimental results have shown that, depending on the step frequency, the traveled distance error varies between 2.7% and 5.6%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actualmente, os sistemas de localização são uma área em forte expansão sendo que para espaços exteriores existe uma grande variedade de sistemas de localização enquanto que para espaços interiores as soluções são mais escassas. Este trabalho apresenta o estudo e implementação de um sistema de localização indoor baseado no protocolo ZigBee, utilizando a informação da intensidade de sinal recebido (RSSI - Received Signal Strength Indication). Para a realização deste projecto foi necessário iniciar uma pesquisa mais pormenorizada do protocolo ZigBee. O dispositivo móvel a ser localizado é o módulo XBee Serie 2 que se baseia no mesmo protocolo. Posto isto, foi necessário efectuar um estudo sobre sistemas de localização existentes e analisar as técnicas de localização utilizadas para ambientes interiores. Desta forma utiliza-se neste projecto uma técnica que consiste na análise de fingerprinting, onde é criado um mapa com os valores RSSI para diferentes coordenadas do espaço físico. As intensidades de sinal recebido são relativas a dispositivos XBee instalados em pontos fixos de referência. Para calcular a localização do dispositivo móvel é utilizado o algoritmo K-NN (K- Nearest Neighbors) que permite estimar a posição aproximada do dispositivo móvel. Por último é descrito todo o desenvolvimento do projecto assim como a apresentação e discussão de resultados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The robotics community is concerned with the ability to infer and compare the results from researchers in areas such as vision perception and multi-robot cooperative behavior. To accomplish that task, this paper proposes a real-time indoor visual ground truth system capable of providing accuracy with at least more magnitude than the precision of the algorithm to be evaluated. A multi-camera architecture is proposed under the ROS (Robot Operating System) framework to estimate the 3D position of objects and the implementation and results were contextualized to the Robocup Middle Size League scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their detrimental effects on human health, scientific interest in ultrafine particles (UFP), has been increasing but available information is far from comprehensive. Children, who represent one of the most susceptible subpopulation, spend the majority of time in schools and homes. Thus, the aim of this study is to (1) assess indoor levels of particle number concentrations (PNC) in ultrafine and fine (20–1000 nm) range at school and home environments and (2) compare indoor respective dose rates for 3- to 5-yr-old children. Indoor particle number concentrations in range of 20–1000 nm were consecutively measured during 56 d at two preschools (S1 and S2) and three homes (H1–H3) situated in Porto, Portugal. At both preschools different indoor microenvironments, such as classrooms and canteens, were evaluated. The results showed that total mean indoor PNC as determined for all indoor microenvironments were significantly higher at S1 than S2. At homes, indoor levels of PNC with means ranging between 1.09 × 104 and 1.24 × 104 particles/cm3 were 10–70% lower than total indoor means of preschools (1.32 × 104 to 1.84 × 104 particles/cm3). Nevertheless, estimated dose rates of particles were 1.3- to 2.1-fold higher at homes than preschools, mainly due to longer period of time spent at home. Daily activity patterns of 3- to 5-yr-old children significantly influenced overall dose rates of particles. Therefore, future studies focusing on health effects of airborne pollutants always need to account for children’s exposures in different microenvironments such as homes, schools, and transportation modes in order to obtain an accurate representation of children overall exposure.