34 resultados para Construction. Indicators System. Performance. Ergonomics. Validation
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper addresses the use of multidimensional scaling in the evaluation of controller performance. Several nonlinear systems are analyzed based on the closed loop time response under the action of a reference step input signal. Three alternative performance indices, based on the time response, Fourier analysis, and mutual information, are tested. The numerical experiments demonstrate the feasibility of the proposed methodology and motivate its extension for other performance measures and new classes of nonlinearities.
Resumo:
Dissertação para obtenção do Grau de Mestre em Contabilidade e Finanças Orientador: Doutora Cláudia Maria Ferreira Pereira Lopes
Resumo:
Com o aumento constante de procura de recursos naturais por parte dos vários setores da sociedade é urgente encontrar soluções para reduzir o seu consumo sem se travar a expansão demográfica que se tem vindo a sentir nos grandes centros urbanos. É através da implementação de medidas de sustentabilidade e pelo aumento da eficiência de utilização desses recursos que se tem vindo a combater esta tendência cada vez maior de consumismo global, sendo isto apenas possível com a implementação de ferramentas tecnológicas avançadas que permitem estabelecer limites ao considerado eficiente e premiando, em termos financeiros e de imagem de marketing, as entidades que o alcancem. O LEED é um sistema de certificação de sustentabilidade voluntário de edifícios residenciais e comerciais que estabelece métricas de comparação de parâmetros indicadores de consumos energéticos, hídricos e de materiais em todo o ciclo de vida do edifício e que tem vindo a ganhar destaque em crescendo a nível mundial. Esta dissertação teve como objetivo comparar a performance de consumo energético no âmbito do sistema LEED com a do sistema de certificação energética de edifícios nacional (SCE) de um grande edifício de serviços, estabelecendo um paralelismo de semelhanças e diferenças entre os dois e de avaliar os efeitos de potenciais medidas de eficiência energética e seus efeitos nas classificações de mérito obtidas em cada sistema. Os resultados obtidos na simulação que permitiu avaliar a performance foi muito satisfatório, tendo sido aproveitado pela empresa para efeitos de certificação LEED do edifício em estudo.
Resumo:
Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.
Resumo:
O desenvolvimento de sistemas de localização pedestre com recurso a técnicas de dead reckoning tem mostrado ser uma área em expansão no mundo académico e não só. Existem algumas soluções criadas, no entanto, nem todas as soluções serão facilmente implementadas no mercado, quer seja pelo hardware caro, ou pelo sistema em si, que é desenvolvido tendo em conta um cenário em particular. INPERLYS é um sistema que visa apresentar uma solução de localização pedestre, independentemente do cenário, utilizando recursos que poderão ser facilmente usados. Trata-se de um sistema que utiliza uma técnica de dead reckonig para dar a localização do utilizador. Em cenários outdoor, um receptor GPS fornece a posição do utilizador, fornecendo uma posição absoluta ao sistema. Quando não é possível utilizar o GPS, recorre-se a um sensor MEMS e a uma bússola para se obter posições relativas à última posição válida do GPS. Para interligar todos os sensores foi utilizado o protocolo de comunicações sem fios ZigBee™. A escolha recaiu neste protocolo devido a factores como os seus baixos consumos e o seu baixo custo. Assim o sistema torna-se de uso fácil e confortável para o utilizador, ao contrário de sistemas similares desenvolvidos, que utilizam cabos para interligarem os diferentes componentes do sistema. O sensor MEMS do tipo acelerómetro tem a função de ler a aceleração horizontal, ao nível do pé. Esta aceleração será usada por um algoritmo de reconhecimento do padrão das acelerações para se detectar os passos dados. Após a detecção do passo, a aceleração máxima registada nesse passo é fornecida ao coordenador, para se obter o deslocamento efectuado. Foram efectuados alguns testes para se perceber a eficiência do INPERLYS. Os testes decorreram num percurso plano, efectuados a uma velocidade normal e com passadas normais. Verificou-se que, neste momento, o desempenho do sistema poderá ser melhorado, quer seja a nível de gestão das comunicações, quer a nível do reconhecimento do padrão da aceleração horizontal, essencial para se detectar os passos. No entanto o sistema é capaz de fornecer a posição através do GPS, quando é possível a sua utilização, e é capaz de fornecer a orientação do movimento.
Resumo:
Most research work on WSNs has focused on protocols or on specific applications. There is a clear lack of easy/ready-to-use WSN technologies and tools for planning, implementing, testing and commissioning WSN systems in an integrated fashion. While there exists a plethora of papers about network planning and deployment methodologies, to the best of our knowledge none of them helps the designer to match coverage requirements with network performance evaluation. In this paper we aim at filling this gap by presenting an unified toolset, i.e., a framework able to provide a global picture of the system, from the network deployment planning to system test and validation. This toolset has been designed to back up the EMMON WSN system architecture for large-scale, dense, real-time embedded monitoring. It includes network deployment planning, worst-case analysis and dimensioning, protocol simulation and automatic remote programming and hardware testing tools. This toolset has been paramount to validate the system architecture through DEMMON1, the first EMMON demonstrator, i.e., a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.
Resumo:
Dragonflies demonstrate unique and superior flight performances than most of the other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, the dynamics of a dragonfly-inspired robot is studied. The system performance is analyzed in terms of time response and robustness. The development of computational simulation based on the dynamics of the robotic dragonfly allows the test of different control algorithms. We study different movements, the dynamics, and the level of dexterity in wing motion of the dragonfly. The results are positive for the construction of flying platforms that effectively mimic the kinematics and dynamics of dragonflies and potentially exhibit superior flight performance than existing flying platforms.
Resumo:
The interest in the development of climbing robots has grown rapidly in the last years. Climbing robots are useful devices that can be adopted in a variety of applications, such as maintenance and inspection in the process and construction industries. These systems are mainly adopted in places where direct access by a human operator is very expensive, because of the need for scaffolding, or very dangerous, due to the presence of an hostile environment. The main motivations are to increase the operation efficiency, by eliminating the costly assembly of scaffolding, or to protect human health and safety in hazardous tasks. Several climbing robots have already been developed, and other are under development, for applications ranging from cleaning to inspection of difficult to reach constructions. A wall climbing robot should not only be light, but also have large payload, so that it may reduce excessive adhesion forces and carry instrumentations during navigation. These machines should be capable of travelling over different types of surfaces, with different inclinations, such as floors, walls, or ceilings, and to walk between such surfaces (Elliot et al. (2006); Sattar et al. (2002)). Furthermore, they should be able of adapting and reconfiguring for various environment conditions and to be self-contained. Up to now, considerable research was devoted to these machines and various types of experimental models were already proposed (according to Chen et al. (2006), over 200 prototypes aimed at such applications had been developed in the world by the year 2006). However, we have to notice that the application of climbing robots is still limited. Apart from a couple successful industrialized products, most are only prototypes and few of them can be found in common use due to unsatisfactory performance in on-site tests (regarding aspects such as their speed, cost and reliability). Chen et al. (2006) present the main design problems affecting the system performance of climbing robots and also suggest solutions to these problems. The major two issues in the design of wall climbing robots are their locomotion and adhesion methods. With respect to the locomotion type, four types are often considered: the crawler, the wheeled, the legged and the propulsion robots. Although the crawler type is able to move relatively faster, it is not adequate to be applied in rough environments. On the other hand, the legged type easily copes with obstacles found in the environment, whereas generally its speed is lower and requires complex control systems. Regarding the adhesion to the surface, the robots should be able to produce a secure gripping force using a light-weight mechanism. The adhesion method is generally classified into four groups: suction force, magnetic, gripping to the surface and thrust force type. Nevertheless, recently new methods for assuring the adhesion, based in biological findings, were proposed. The vacuum type principle is light and easy to control though it presents the problem of supplying compressed air. An alternative, with costs in terms of weight, is the adoption of a vacuum pump. The magnetic type principle implies heavy actuators and is used only for ferromagnetic surfaces. The thrust force type robots make use of the forces developed by thrusters to adhere to the surfaces, but are used in very restricted and specific applications. Bearing these facts in mind, this chapter presents a survey of different applications and technologies adopted for the implementation of climbing robots locomotion and adhesion to surfaces, focusing on the new technologies that are recently being developed to fulfill these objectives. The chapter is organized as follows. Section two presents several applications of climbing robots. Sections three and four present the main locomotion principles, and the main "conventional" technologies for adhering to surfaces, respectively. Section five describes recent biological inspired technologies for robot adhesion to surfaces. Section six introduces several new architectures for climbing robots. Finally, section seven outlines the main conclusions.
Resumo:
Empowered by virtualisation technology, cloud infrastructures enable the construction of flexi- ble and elastic computing environments, providing an opportunity for energy and resource cost optimisation while enhancing system availability and achieving high performance. A crucial re- quirement for effective consolidation is the ability to efficiently utilise system resources for high- availability computing and energy-efficiency optimisation to reduce operational costs and carbon footprints in the environment. Additionally, failures in highly networked computing systems can negatively impact system performance substantially, prohibiting the system from achieving its initial objectives. In this paper, we propose algorithms to dynamically construct and readjust vir- tual clusters to enable the execution of users’ jobs. Allied with an energy optimising mechanism to detect and mitigate energy inefficiencies, our decision-making algorithms leverage virtuali- sation tools to provide proactive fault-tolerance and energy-efficiency to virtual clusters. We conducted simulations by injecting random synthetic jobs and jobs using the latest version of the Google cloud tracelogs. The results indicate that our strategy improves the work per Joule ratio by approximately 12.9% and the working efficiency by almost 15.9% compared with other state-of-the-art algorithms.
Resumo:
Current Manufacturing Systems challenges due to international economic crisis, market globalization and e-business trends, incites the development of intelligent systems to support decision making, which allows managers to concentrate on high-level tasks management while improving decision response and effectiveness towards manufacturing agility. This paper presents a novel negotiation mechanism for dynamic scheduling based on social and collective intelligence. Under the proposed negotiation mechanism, agents must interact and collaborate in order to improve the global schedule. Swarm Intelligence (SI) is considered a general aggregation term for several computational techniques, which use ideas and inspiration from the social behaviors of insects and other biological systems. This work is primarily concerned with negotiation, where multiple self-interested agents can reach agreement over the exchange of operations on competitive resources. Experimental analysis was performed in order to validate the influence of negotiation mechanism in the system performance and the SI technique. Empirical results and statistical evidence illustrate that the negotiation mechanism influence significantly the overall system performance and the effectiveness of Artificial Bee Colony for makespan minimization and on the machine occupation maximization.
Resumo:
Maintaining a high level of data security with a low impact on system performance is more challenging in wireless multimedia applications. Protocols that are used for wireless local area network (WLAN) security are known to significantly degrade performance. In this paper, we propose an enhanced security system for a WLAN. Our new design aims to decrease the processing delay and increase both the speed and throughput of the system, thereby making it more efficient for multimedia applications. Our design is based on the idea of offloading computationally intensive encryption and authentication services to the end systems’ CPUs. The security operations are performed by the hosts’ central processor (which is usually a powerful processor) before delivering the data to a wireless card (which usually has a low-performance processor). By adopting this design, we show that both the delay and the jitter are significantly reduced. At the access point, we improve the performance of network processing hardware for real-time cryptographic processing by using a specialized processor implemented with field-programmable gate array technology. Furthermore, we use enhanced techniques to implement the Counter (CTR) Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP) and the CTR protocol. Our experiments show that it requires timing in the range of 20–40 μs to perform data encryption and authentication on different end-host CPUs (e.g., Intel Core i5, i7, and AMD 6-Core) as compared with 10–50 ms when performed using the wireless card. Furthermore, when compared with the standard WiFi protected access II (WPA2), results show that our proposed security system improved the speed to up to 3.7 times.
Resumo:
Dragonflies demonstrate unique and superior flight performances than most of the other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper it is studied the dynamics of a dragonfly-inspired robot. The system performance is analyzed in terms of time response and robustness. The development of computational simulation based on the dynamics of the robotic dragonfly allows the test of different control algorithms. We study different movement, the dynamics and the level of dexterity in wing motion of the dragonfly. The results are positive for the construction of flying platforms that effectively mimic the kinematics and dynamics of dragonflies and potentially exhibit superior flight performance than existing flying platforms.
Resumo:
The Electromyography (EMG) is an important tool for gait analyzes and disorders diagnoses. Traditional methods involve equipment that can disturb the analyses, being gradually substituted by different approaches, like wearable and wireless systems. The cable replacement for autonomous systems demands for technologies capable of meeting the power constraints. This work presents the development of an EMG and kinematic data capture wireless module, designed taking into account power consumption issues. This module captures and converts the analog myoeletric signal to digital, synchronously with the capture of kinetic information. Both data are time multiplexed and sent to a PC via Bluetooth link. The work carried out comprised the development of the hardware, the firmware and a graphical interface running in an external PC. The hardware was developed using the PIC18F14K22, a low power family of microcontrollers. The link was established via Bluetooth, a protocol designed for low power communication. An application was also developed to recover and trace the signal to a Graphic User Interface (GUI), coordinating the message exchange with the firmware. Results were obtained which allowed validating the conceived system in static and with the subject performing short movements. Although it was not possible to perform the tests within more dynamic movements, it is shown that it is possible to capture, transmit and display the captured data as expected. Some suggestions to improve the system performance also were made.
Resumo:
Mestrado em Engenharia Informática
Resumo:
A avaliação do desempenho consiste num instrumento estratégico de extrema importância para a gestão de recursos humanos numa organização, tal como no Exército. Permite criar indicadores ao nível do desempenho dos avaliados ao mesmo tempo que contribui para o diagnóstico e sua melhoria contínua. Ao nível dos órgãos decisores proporciona uma análise das capacidades dos recursos humanos e a sua correta gestão. Foi neste contexto que este trabalho de investigação foi desenvolvido, tendo sido traçado como objetivo, estudar a perceção dos militares avaliadores do Exército Português (EP) quanto aos sistemas de avaliação de desempenho (SAD) em vigor no Exército (SAMME1 e SIADAP2). Usou-se uma metodologia quantitativa e qualitativa e para o efeito foi desenvolvido um questionário, que foi passado aos Coronéis, Tenentes-coronéis, Majores e Capitães, todos eles avaliadores. Esta escolha fundamenta-se pela posição que os mesmos ocupam na cadeia hierárquica, pela experiência e o nível de conhecimentos que possuem sobre os sistemas de avaliação, podendo contribuir com as suas opiniões e sugestões, para a melhoria dos sistemas de avaliação atualmente em vigor no EP. Participaram no presente estudo 259 Oficiais avaliadores que responderam a um questionário online lançado na internet. Os principais resultados obtidos permitem concluir que o SAMME assume maior relevância e menor subjetividade que o SIADAP. Foi ainda observada a necessidade de implementar algumas medidas corretivas nos dois sistemas de avaliação em estudo, tais como: implementar no SAMME a autoavaliação e criar objetivos; no SIADAP, acabar com as quotas de 5% para a atribuição da classificação de desempenho excelente aos avaliados; Observou-se ainda que o avaliador tem uma importância