15 resultados para Book to market effect
em Instituto Politécnico do Porto, Portugal
Resumo:
In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.
Resumo:
In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.
Resumo:
Debugging electronic circuits is traditionally done with bench equipment directly connected to the circuit under debug. In the digital domain, the difficulties associated with the direct physical access to circuit nodes led to the inclusion of resources providing support to that activity, first at the printed circuit level, and then at the integrated circuit level. The experience acquired with those solutions led to the emergence of dedicated infrastructures for debugging cores at the system-on-chip level. However, all these developments had a small impact in the analog and mixed-signal domain, where debugging still depends, to a large extent, on direct physical access to circuit nodes. As a consequence, when analog and mixed-signal circuits are integrated as cores inside a system-on-chip, the difficulties associated with debugging increase, which cause the time-to-market and the prototype verification costs to also increase. The present work considers the IEEE1149.4 infrastructure as a means to support the debugging of mixed-signal circuits, namely to access the circuit nodes and also an embedded debug mechanism named mixed-signal condition detector, necessary for watch-/breakpoints and real-time analysis operations. One of the main advantages associated with the proposed solution is the seamless migration to the system-on-chip level, as the access is done through electronic means, thus easing debugging operations at different hierarchical levels.
Resumo:
Dissertação de Mestrado Mestrado em Empreendedorismo e Internacionalização Orientada por Mestre Anabela Ribeiro
Resumo:
Electricity markets are complex environments comprising several negotiation mechanisms. MASCEM (Multi- Agent System for Competitive Electricity Markets) is a simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. ALBidS (Adaptive Learning Strategic Bidding System) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This paper aims to complement ALBidS strategies usage by MASCEM players, providing, through the Six Thinking Hats group decision technique, a means to combine them and take advantages from their different perspectives. The combination of the different proposals resulting from ALBidS’ strategies is performed through the application of a Genetic Algorithm, resulting in an evolutionary learning approach.
Resumo:
Relatório de Estágio apresentado ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do Grau de Mestre em Assessoria de Administração Orientadora: Doutora Isabel Ardions
Resumo:
The spread and globalization of distributed generation (DG) in recent years has should highly influence the changes that occur in Electricity Markets (EMs). DG has brought a large number of new players to take action in the EMs, therefore increasing the complexity of these markets. Simulation based on multi-agent systems appears as a good way of analyzing players’ behavior and interactions, especially in a coalition perspective, and the effects these players have on the markets. MASCEM – Multi-Agent System for Competitive Electricity Markets was created to permit the study of the market operation with several different players and market mechanisms. MASGriP – Multi-Agent Smart Grid Platform is being developed to facilitate the simulation of micro grid (MG) and smart grid (SG) concepts with multiple different scenarios. This paper presents an intelligent management method for MG and SG. The simulation of different methods of control provides an advantage in comparing different possible approaches to respond to market events. Players utilize electric vehicles’ batteries and participate in Demand Response (DR) contracts, taking advantage on the best opportunities brought by the use of all resources, to improve their actions in response to MG and/or SG requests.
Resumo:
Currently, Power Systems (PS) already accommodate a substantial penetration of DG and operate in competitive environments. In the future PS will have to deal with largescale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. This cannot be done with the traditional PS operation. SCADA (Supervisory Control and Data Acquisition) is a vital infrastructure for PS. Current SCADA adaptation to accommodate the new needs of future PS does not allow to address all the requirements. In this paper we present a new conceptual design of an intelligent SCADA, with a more decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). Once a situation is characterized, data and control options available to each entity are re-defined according to this context, taking into account operation normative and a priori established contracts. The paper includes a case-study of using future SCADA features to use DER to deal with incident situations, preventing blackouts.
Resumo:
Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.
Resumo:
Agility refers to the manufacturing system ability to rapidly adapt to market and environmental changes in efficient and cost-effective ways. This paper addresses the development of self-organization methods to enhance the operations of a scheduling system, by integrating scheduling system, configuration and optimization into a single autonomic process requiring minimal manual intervention to increase productivity and effectiveness while minimizing complexity for users. We intend to conceptualize real manufacturing systems as interacting autonomous entities in order to build future Decision Support Systems (DSS) for Scheduling in agile manufacturing environments.
Resumo:
Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.
Resumo:
On-chip debug (OCD) features are frequently available in modern microprocessors. Their contribution to shorten the time-to-market justifies the industry investment in this area, where a number of competing or complementary proposals are available or under development, e.g. NEXUS, CJTAG, IJTAG. The controllability and observability features provided by OCD infrastructures provide a valuable toolbox that can be used well beyond the debugging arena, improving the return on investment rate by diluting its cost across a wider spectrum of application areas. This paper discusses the use of OCD features for validating fault tolerant architectures, and in particular the efficiency of various fault injection methods provided by enhanced OCD infrastructures. The reference data for our comparative study was captured on a workbench comprising the 32-bit Freescale MPC-565 microprocessor, an iSYSTEM IC3000 debugger (iTracePro version) and the Winidea 2005 debugging package. All enhanced OCD infrastructures were implemented in VHDL and the results were obtained by simulation within the same fault injection environment. The focus of this paper is on the comparative analysis of the experimental results obtained for various OCD configurations and debugging scenarios.
Resumo:
A indústria da construção é um setor com grande impacto na economia, no Produto Interno Bruto (PIB) e ainda em postos de trabalho diretos e indiretos. No entanto, é um dos setores com maior impacte ambiental. Com a crise económica e financeira que o país atravessa, este setor foi um dos mais afetados, contribuindo para o aumento do desemprego visto tratar-se do setor com maior taxa de empregabilidade. Concomitantemente, ocorre saturação do mercado com a construção nova e desertificação dos centros urbanos com a degradação das habitações. Assim, como impulsionador da economia, surge a aposta na reabilitação do parque edificado que, com a legislação em vigor e com os incentivos dados pela tutela tem tudo para impulsionar o setor. Sabendo que a indústria da construção é um dos setores com maiores impactes ambientais, faz todo o sentido reabilitar-se de uma forma mais sustentável. Aplicando os princípios da sustentabilidade a todo o ciclo de vida do edifício, conseguimos reduzir os recursos na fase de construção (resíduos de construção) e na fase de exploração (consumo de energia e de água). Podemos ainda reduzir os custos de energia para climatização ao termos em conta a orientação do edifício e a envolvente, os recursos naturais e aplicando tecnologias solares passivas. Assim, ao aplicarmos os princípios da construção sustentável na reabilitação urbana podemos diminuir os impactes ambientais, a produção de CO2, as emissões de gases com efeito de estufa, os resíduos de construção e a área impermeabilizada.
Resumo:
Biomechanical gait parameters—ground reaction forces (GRFs) and plantar pressures—during load carriage of young adults were compared at a low gait cadence and a high gait cadence. Differences between load carriage and normal walking during both gait cadences were also assessed. A force plate and an in-shoe plantar pressure system were used to assess 60 adults while they were walking either normally (unloaded condition) or wearing a backpack (loaded condition) at low (70 steps per minute) and high gait cadences (120 steps per minute). GRF and plantar pressure peaks were scaled to body weight (or body weight plus backpack weight). With medium to high effect sizes we found greater anterior-posterior and vertical GRFs and greater plantar pressure peaks in the rearfoot, forefoot and hallux when the participants walked carrying a backpack at high gait cadences compared to walking at low gait cadences. Differences between loaded and unloaded conditions in both gait cadences were also observed.
Resumo:
Com as atuais exigências do mercado, as empresas têm de dar respostas cada vez mais rigorosas aos clientes, como entregas mais regulares e quantidades mais reduzidas, preços mais baixos e tempos de resposta e entregas menores. Processos e produtos mais flexíveis e inovadores são a chave para a sobrevivência e sucesso de muitas empresas: cumprindo os prazos, aumentando a produtividade dos processos, respondendo rapidamente às necessidades do mercado, reduzindo o stock em toda a cadeia, reduzindo tempo e custos operacionais e integrando todas as estruturas de forma a facilitar a troca de informação, refere Russel e Taylor III, (2003). Nos últimos anos temos assistido a uma constante mudança cultural nas empresas, onde a motivação e o desempenho dos seus colaboradores são tidos como essenciais. No grupo SONAE, as práticas existentes continuam a orientar para uma cultura verdadeiramente inovadora. A implementação da metodologia Kaizen foi uma autêntica revolução em que foram desenvolvidas inúmeras ideias, assentando numa forte mudança cultural. O presente estudo pretende clarificar todo o processo de melhoria contínua através da implementação de ferramentas que lhe estão associadas, bem como as auditorias a esses mesmos procedimentos. Cada vez mais, são identificadas estratégias de melhoria contínua baseadas na filosofia Kaizen como forma de fazer face aos novos desafios. Com a implementação do Kaizen, este projeto terá como principal objetivo averiguar se os funcionários estão a obter resultados positivos nas suas funções diárias, bem como nas tarefas em conjunto com os colegas da sua equipa ou de outras equipas. Assim surge o interesse de um estudo de caso realizado na Direção de Serviços Administrativos da SONAE.