138 resultados para Billing Platform
em Instituto Politécnico do Porto, Portugal
Resumo:
The increasing number of players that operate in power systems leads to a more complex management. In this paper a new multi-agent platform is proposed, which simulates the real operation of power system players. MASGriP – A Multi-Agent Smart Grid Simulation Platform is presented. Several consumer and producer agents are implemented and simulated, considering real characteristics and different goals and actuation strategies. Aggregator entities, such as Virtual Power Players and Curtailment Service Providers are also included. The integration of MASGriP agents in MASCEM (Multi-Agent System for Competitive Electricity Markets) simulator allows the simulation of technical and economical activities of several players. An energy resources management architecture used in microgrids is also explained.
Resumo:
This paper is about PCMAT, an adaptive learning platform for Mathematics in Basic Education schools. Based on a constructivist approach, PCMAT aims at verifying how techniques from adaptive hypermedia systems can improve e-learning based systems. To achieve this goal, PCMAT includes a Pedagogical Model that contains a set of adaptation rules that influence the student-platform interaction. PCMAT was subject to a preliminary testing with students aged between 12 and 14 years old on the subject of direct proportionality. The results from this preliminary test are quite promising as they seem to demonstrate the validity of our proposal.
Resumo:
The aim of this paper is to present an adaptation model for an Adaptive Educational Hypermedia System, PCMAT. The adaptation of the application is based on progressive self-assessment (exercises, tasks, and so on) and applies the constructivist learning theory and the learning styles theory. Our objective is the creation of a better, more adequate adaptation model that takes into account the complexities of different users.
Resumo:
The recent advances in embedded systems world, lead us to more complex systems with application specific blocks (IP cores), the System on Chip (SoC) devices. A good example of these complex devices can be encountered in the cell phones that can have image processing cores, communication cores, memory card cores, and others. The need of augmenting systems’ processing performance with lowest power, leads to a concept of Multiprocessor System on Chip (MSoC) in which the execution of multiple tasks can be distributed along various processors. This thesis intends to address the creation of a synthesizable multiprocessing system to be placed in a FPGA device, providing a good flexibility to tailor the system to a specific application. To deliver a multiprocessing system, will be used the synthesisable 32-bit SPARC V8 compliant, LEON3 processor.
Resumo:
One of the most difficult issues of e-Learning is the students’ assessment. Being this an outstanding task regarding theoretical topics, it becomes even more challenging when the topics under evaluation are practical. ISCAP’s Information Systems Department is composed of about twenty teachers who have been for several years using an e-learning environment (at the moment Moodle 2.3) combined with traditional assessment. They are now planning and implementing a new e-learning assessment strategy. This effort was undertaken in order to evaluate a practical topic (the use of spreadsheets to solve management problems) common to shared courses of several undergraduate degree programs. The same team group is already experienced in the assessment of theoretical information systems topics using the b-learning platform. Therefore, this project works as an extension to previous experiences being the team aware of the additional difficulties due to the practical nature of the topics. This paper describes this project and presents two cycles of the action research methodology, used to conduct the research. The first cycle goal was to produce a database of questions. When it was implemented in order to be used with a pilot group of students, several problems were identified. Subsequently, the second cycle consisted in solving the identified problems preparing the database and all the players to a broader scope implementation. For each cycle, all the phases, its drawbacks and achievements are described. This paper suits all those who are or are planning to be in the process of shifting their assessment strategy from a traditional to one supported by an e-learning platform.
Resumo:
The Robuter is a robotic mobile platform that is located in the “Hands-On” Laboratory of the IPP-Hurray! Research Group, at the School of Engineering of the Polytechnic Institute of Porto. Recently, the Robuter was subject of an upgrading process addressing two essential areas: the Hardware Architecture and the Software Architecture. This upgrade in process was triggered due to technical problems on-board of the robot and also to the fact that the hardware/software architecture has become obsolete. This Technical Report overviews the most important aspects of the new Hardware and Software Architectures of the Robuter. This document also presents a first approach on the first steps towards the use of the Robuter platform, and provides some hints on future work that may be carried out using this mobile platform.
Resumo:
This paper describes a multi-agent brokerage platform for near real time advertising personalisation organised in three layers: user interface, agency and marketplace. The personalisation is based on the classification of viewer profiles and advertisements (ads). The goal is to provide viewers with a personalised advertising alignment during programme intervals. The enterprise interface agents upload new ads and negotiation profiles to producer agents and new user and negotiation profiles to distributor agents. The agency layer is composed of agents that represent ad producer and media distributor enterprises as well as the market regulator. The enterprise agents offer data upload and download operations as Web Services and register the specification of these interfaces at an UDDI registry for future discovery. The market agent supports the registration and deregistration of enterprise delegate agents at the marketplace. This paper addresses the marketplace layer, an agent-based negotiation platform per se, where delegates of the relevant advertising agencies and programme distributors negotiate to create the advertising alignment that best fits a viewer profile and the advertising campaigns available. The whole brokerage platform is being developed in JADE, a multi-agent development platform. The delegate agents download the negotiation profile and upload the negotiation results from / to the corresponding enterprise agent. In the meanwhile, they negotiate using the Iterated Contract Net protocol. All tools and technologies used are open source.
Resumo:
This paper proposes a novel business model to support media content personalisation: an agent-based business-to-business (B2B) brokerage platform for media content producer and distributor businesses. Distributors aim to provide viewers with a personalised content experience and producers wish to en-sure that their media objects are watched by as many targeted viewers as possible. In this scenario viewers and media objects (main programmes and candidate objects for insertion) have profiles and, in the case of main programme objects, are annotated with placeholders representing personalisation opportunities, i.e., locations for insertion of personalised media objects. The MultiMedia Brokerage (MMB) platform is a multiagent multilayered brokerage composed by agents that act as sellers and buyers of viewer stream timeslots and/or media objects on behalf of the registered businesses. These agents engage in negotiations to select the media objects that best match the current programme and viewer profiles.
Resumo:
Modern multicore processors for the embedded market are often heterogeneous in nature. One feature often available are multiple sleep states with varying transition cost for entering and leaving said sleep states. This research effort explores the energy efficient task-mapping on such a heterogeneous multicore platform to reduce overall energy consumption of the system. This is performed in the context of a partitioned scheduling approach and a very realistic power model, which improves over some of the simplifying assumptions often made in the state-of-the-art. The developed heuristic consists of two phases, in the first phase, tasks are allocated to minimise their active energy consumption, while the second phase trades off a higher active energy consumption for an increased ability to exploit savings through more efficient sleep states. Extensive simulations demonstrate the effectiveness of the approach.
Resumo:
Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a two-type heterogeneous multiprocessor platform where a task may request at most one of |R| shared resources. There are m1 processors of type-1 and m2 processors of type-2. Tasks may migrate only when requesting or releasing resources. We present a new algorithm, FF-3C-vpr, which offers a guarantee that if a task set is schedulable to meet deadlines by an optimal task assignment scheme that only allows tasks to migrate when requesting or releasing a resource, then FF-3Cvpr also meets deadlines if given processors 4+6*ceil(|R|/min(m1,m2)) times as fast. As far as we know, it is the first result for resource sharing on heterogeneous platforms with provable performance.
Resumo:
Structural health monitoring has long been identified as a prominent application of Wireless Sensor Networks (WSNs), as traditional wired-based solutions present some inherent limitations such as installation/maintenance cost, scalability and visual impact. Nevertheless, there is a lack of ready-to-use and off-the-shelf WSN technologies that are able to fulfill some most demanding requirements of these applications, which can span from critical physical infrastructures (e.g. bridges, tunnels, mines, energy grid) to historical buildings or even industrial machinery and vehicles. Low-power and low-cost yet extremely sensitive and accurate accelerometer and signal acquisition hardware and stringent time synchronization of all sensors data are just examples of the requirements imposed by most of these applications. This paper presents a prototype system for health monitoring of civil engineering structures that has been jointly conceived by a team of civil, and electrical and computer engineers. It merges the benefits of standard and off-the-shelf (COTS) hardware and communication technologies with a minimum set of custom-designed signal acquisition hardware that is mandatory to fulfill all application requirements.
Resumo:
More than ever, the economic globalization is creating the need to increase business competitiveness. Lean manufacturing is a management philosophy oriented to the elimination of activities that do not create any type of value and are thus considered a waste. One of the main differences from other management philosophies is the shop-floor focus and the operators' involvement. Therefore, the training of all organization levels is crucial for the success of lean manufacturing. Universities should also participate actively in this process by developing students' lean management skills and promoting a better and faster integration of students into their future organizations. This paper proposes a single realistic manufacturing platform, involving production and assembly operations, to learn by playing many of the lean tools such as VSM, 5S, SMED, poke-yoke, line balance, TPM, Mizusumashi, plant layout, and JIT/kanban. This simulation game was built in tight cooperation with experienced lean companies under the international program “Lean Learning Academy,”http://www.leanlearningacademy.eu/ and its main aim is to make bachelor and master courses in applied sciences more attractive by integrating classic lectures with a simulated production environment that could result in more motivated students and higher study yields. The simulation game results show that our approach is efficient in providing a realistic platform for the effective learning of lean principles, tools, and mindset, which can be easily included in course classes of less than two hours.
Resumo:
Within the pedagogical community, Serious Games have arisen as a viable alternative to traditional course-based learning materials. Until now, they have been based strictly on software solutions. Meanwhile, research into Remote Laboratories has shown that they are a viable, low-cost solution for experimentation in an engineering context, providing uninterrupted access, low-maintenance requirements, and a heightened sense of reality when compared to simulations. This paper will propose a solution where both approaches are combined to deliver a Remote Laboratory-based Serious Game for use in engineering and school education. The platform for this system is the WebLab-Deusto Framework, already well-tested within the remote laboratory context, and based on open standards. The laboratory allows users to control a mobile robot in a labyrinth environment and take part in an interactive game where they must locate and correctly answer several questions, the subject of which can be adapted to educators' needs. It also integrates the Google Blockly graphical programming language, allowing students to learn basic programming and logic principles without needing to understand complex syntax.
Resumo:
This paper reports on a first step towards the implementation of a framework for remote experimentation of electric machines ? the RemoteLabs platform. This project was focused on the development of two main modules: the user Web-based and the electric machines interfaces. The Web application provides the user with a front-end and interacts with the back-end ? the user and experiment persistent data. The electric machines interface is implemented as a distributed client server application where the clients, launched by the Web application, interact with the server modules located in platforms physically connected the electric machines drives. Users can register and authenticate, schedule, specify and run experiments and obtain results in the form of CSV, XML and PDF files. These functionalities were successfully tested with real data, but still without including the electric machines. This inclusion is part of another project scheduled to start soon.
Resumo:
Environmental concerns and the shortage in the fossil fuel reserves have been potentiating the growth and globalization of distributed generation. Another resource that has been increasing its importance is the demand response, which is used to change consumers’ consumption profile, helping to reduce peak demand. Aiming to support small players’ participation in demand response events, the Curtailment Service Provider emerged. This player works as an aggregator for demand response events. The control of small and medium players which act in smart grid and micro grid environments is enhanced with a multi-agent system with artificial intelligence techniques – the MASGriP (Multi-Agent Smart Grid Platform). Using strategic behaviours in each player, this system simulates the profile of real players by using software agents. This paper shows the importance of modeling these behaviours for studying this type of scenarios. A case study with three examples shows the differences between each player and the best behaviour in order to achieve the higher profit in each situation.