155 resultados para programmazione genetica, algoritmi genetici, trading system
Resumo:
The forthcoming smart grids are comprised of integrated microgrids operating in grid-connected and isolated mode with local generation, storage and demand response (DR) programs. The proposed model is based on three successive complementary steps for power transaction in the market environment. The first step is characterized as a microgrid’s internal market; the second concerns negotiations between distinct interconnected microgrids; and finally, the third refers to the actual electricity market. The proposed approach is modeled and tested using a MAS framework directed to the study of the smart grids environment, including the simulation of electricity markets. This is achieved through the integration of the proposed approach with the MASGriP (Multi-Agent Smart Grid Platform) system.
Resumo:
Traditional vertically integrated power utilities around the world have evolved from monopoly structures to open markets that promote competition among suppliers and provide consumers with a choice of services. Market forces drive the price of electricity and reduce the net cost through increased competition. Electricity can be traded in both organized markets or using forward bilateral contracts. This article focuses on bilateral contracts and describes some important features of an agent-based system for bilateral trading in competitive markets. Special attention is devoted to the negotiation process, demand response in bilateral contracting, and risk management. The article also presents a case study on forward bilateral contracting: a retailer agent and a customer agent negotiate a 24h-rate tariff.
Resumo:
In this work, the impact of distributed generation in the transmission expansion planning will be simulated through the performance of an optimization process for three different scenarios: the first without distributed generation, the second with distributed generation equivalent to 1% of the load, and the third with 5% of distributed generation. For modeling the expanding problem the load flow linearized method using genetic algorithms for optimization has been chosen. The test circuit used is a simplification of the south eastern Brazilian electricity system with 46 buses.
Resumo:
The integration of the Smart Grid concept into the electric grid brings to the need for an active participation of small and medium players. This active participation can be achieved using decentralized decisions, in which the end consumer can manage loads regarding the Smart Grid needs. The management of loads must handle the users’ preferences, wills and needs. However, the users’ preferences, wills and needs can suffer changes when faced with exceptional events. This paper proposes the integration of exceptional events into the SCADA House Intelligent Management (SHIM) system developed by the authors, to handle machine learning issues in the domestic consumption context. An illustrative application and learning case study is provided in this paper.
Resumo:
Nos últimos anos, o ISEP em colaboração com a FEUP e outras Universidades, criou um simulador realista de condução chamado DRIS, que tem como objectivo ajudar em trabalhos de investigação de diferentes áreas, como engenharia civil, computação gráfica, psicologia, educação, etc. O resultado deste trabalho pretende ajudar os profissionais a analisarem os dados recolhidos em cada experiência de condução, a fim de permitir o estudo das reações do motorista em diferentes obstáculos durante um percurso. O simulador DRIS é constituído por uma tela branca, onde os ambientes de simulação são projetados; um carro real, onde é feita a experiência de condução e quatro câmaras colocadas no carro. Destas quatro câmaras, três estão dentro do carro e uma fora do carro. Cada câmara está focada estrategicamente, em partes críticas da condução: a estrada, o motorista, os pedais e os controles (mudança de marcha, volante, os comandos do limpador, etc). Cada uma das câmaras grava um vídeo, que é guardado em um computador colocado em uma das salas de controlo, dentro do Laboratório de Análise de Tráfego na FEUP. Além disso, um arquivo de texto é guardado no mesmo computador. Este arquivo de texto contém algumas informações sobre a experiência do motorista, como as coordenadas do carro, a velocidade do carro, o tempo, etc O trabalho desta Tese surge com a finalidade de melhorar a forma de os profissionais analisar e interpretar os dados recolhidos a partir de uma experiência de condução no DRIS. Para o efeito, foi criado um sistema de vídeo-‐monitorização, que consiste em uma aplicação de vídeo, que permite a visualização de quatro vídeos simultaneamente, e ler um arquivo de texto, que contém todos os dados recolhidos na experiência. Ambos (vídeo e texto) têm de estar sincronizados com o mesmo tempo de forma a permitir ao utilizador, navegar backward e forward com a ajuda de um cursor. Além disso, como qualquer reprodutor de vídeo básico, contém alguns botões para controlar o status do vídeo (Play, Stop, Pause) e permiti que os profissionais analisem com detalhe os dados dos quatro vídeos. Aproveitando os avanços no desenvolvimento de software, a aplicação foi feita em C++ usando a biblioteca Qt, em ambiente de desenvolvimento integrado do Qt Creator, o que tornou mais fácil a implementação. No fim deste relatório (capítulo 4) é anexado um manual do usuário, a fim de explicar e ajudar os profissionais a usar a aplicação.
Resumo:
Um dos principais objetivos da ciência é perceber a natureza, i.e., descobrir e explicar o funcionamento do mundo que nos rodeia. Para tal, os cientistas precisam de coligir dados e monitorar o meio ambiente. Em particular, considerando que cerca de 70% da Terra é coberta por água, a coleta de parâmetros de caracterização da água de grandes superfícies é uma prioridade. A monitorização das condições da água é feita principalmente através de bóias. No entanto, as bóias disponíveis no mercado não satisfazem as necessidades existentes. Esta é uma das principais razões que levaram o Laboratório de Sistemas Autónomos (LSA) do Instituto Superior de Engenharia do Porto a lançarem um projeto para o desenvolvimento de uma bóia reconfigurável e com dois modos de funcionamento: monitorização ambiental e baliza ativa de regata. O segundo modo é destinado a regatas de veleiros autónomos. O projeto começou há um ano com um projeto do European Project Project [1] (EPS), realizado por quatro estudantes internacionais, destinado à construção da estrutura da bóia e à selecção dos componentes mais adequados para o sistema de medição e controlo. A arquitetura que foi definida para este sistema é do tipo mestre-escravo e é composta por uma unidade de controlo mestre para a telemetria e configuração e uma unidade de controlo escrava para a medição e armazenamento de dados. O desenvolvimento do projeto continuou com dois estudantes belgas que trabalharam na comunicação e no armazenamento de dados. Este projeto, que prossegue com o desenvolvimento da medição e do armazenamento de dados do lado da unidade de controlo escrava, tem os seguintes objetivos: (i ) implementar o protocolo de comunicação na unidade de controlo escrava; (ii ) coligir e armazenar os dados dos sensores no cartão SD em tempo real; (iii ) fornecer dados em tempo útil; e (iv) recuperar dados do cartão SD em tempo diferido. As contribuições anteriores foram estudadas e foi feito um levantamento dos projetos congéneres existentes. O desenvolvimento do projeto atual começou com o protocolo de comunicação. Este protocolo, que foi projetado pelos alunos anteriores, foi um bom ponto de partida. No entanto, o protocolo foi atualizado e melhorado com novas funcionalidades. Esta última componente foi um trabalho conjunto com Laurens Allart, que esteve a trabalhar no subsistema de telemetria e de configuração durante este semestre. O protocolo foi implementado do lado da unidade de controlo escrava através de uma estrutura de múltiplas actividades paralelas (multithreaded). Esta estrutura recebe as mensagens da unidade mestre, executa as ações solicitadas e envia de volta o resultado. A bóia é um dispositivo reconfigurável multimodo que pode ser expandido com novos modos de operação no futuro. Infelizmente, sofre de algumas limitações: suporta uma carga máxima de 40 kg e tem uma área de implantação limitada pela distância máxima à estacão base.
Resumo:
All over the world, the liberalization of electricity markets, which follows different paradigms, has created new challenges for those involved in this sector. In order to respond to these challenges, electric power systems suffered a significant restructuring in its mode of operation and planning. This restructuring resulted in a considerable increase of the electric sector competitiveness. Particularly, the Ancillary Services (AS) market has been target of constant renovations in its operation mode as it is a targeted market for the trading of services, which have as main objective to ensure the operation of electric power systems with appropriate levels of stability, safety, quality, equity and competitiveness. In this way, with the increasing penetration of distributed energy resources including distributed generation, demand response, storage units and electric vehicles, it is essential to develop new smarter and hierarchical methods of operation of electric power systems. As these resources are mostly connected to the distribution network, it is important to consider the introduction of this kind of resources in AS delivery in order to achieve greater reliability and cost efficiency of electrical power systems operation. The main contribution of this work is the design and development of mechanisms and methodologies of AS market and for energy and AS joint market, considering different management entities of transmission and distribution networks. Several models developed in this work consider the most common AS in the liberalized market environment: Regulation Down; Regulation Up; Spinning Reserve and Non-Spinning Reserve. The presented models consider different rules and ways of operation, such as the division of market by network areas, which allows the congestion management of interconnections between areas; or the ancillary service cascading process, which allows the replacement of AS of superior quality by lower quality of AS, ensuring a better economic performance of the market. A major contribution of this work is the development an innovative methodology of market clearing process to be used in the energy and AS joint market, able to ensure viable and feasible solutions in markets, where there are technical constraints in the transmission network involving its division into areas or regions. The proposed method is based on the determination of Bialek topological factors and considers the contribution of the dispatch for all services of increase of generation (energy, Regulation Up, Spinning and Non-Spinning reserves) in network congestion. The use of Bialek factors in each iteration of the proposed methodology allows limiting the bids in the market while ensuring that the solution is feasible in any context of system operation. Another important contribution of this work is the model of the contribution of distributed energy resources in the ancillary services. In this way, a Virtual Power Player (VPP) is considered in order to aggregate, manage and interact with distributed energy resources. The VPP manages all the agents aggregated, being able to supply AS to the system operator, with the main purpose of participation in electricity market. In order to ensure their participation in the AS, the VPP should have a set of contracts with the agents that include a set of diversified and adapted rules to each kind of distributed resource. All methodologies developed and implemented in this work have been integrated into the MASCEM simulator, which is a simulator based on a multi-agent system that allows to study complex operation of electricity markets. In this way, the developed methodologies allow the simulator to cover more operation contexts of the present and future of the electricity market. In this way, this dissertation offers a huge contribution to the AS market simulation, based on models and mechanisms currently used in several real markets, as well as the introduction of innovative methodologies of market clearing process on the energy and AS joint market. This dissertation presents five case studies; each one consists of multiple scenarios. The first case study illustrates the application of AS market simulation considering several bids of market players. The energy and ancillary services joint market simulation is exposed in the second case study. In the third case study it is developed a comparison between the simulation of the joint market methodology, in which the player bids to the ancillary services is considered by network areas and a reference methodology. The fourth case study presents the simulation of joint market methodology based on Bialek topological distribution factors applied to transmission network with 7 buses managed by a TSO. The last case study presents a joint market model simulation which considers the aggregation of small players to a VPP, as well as complex contracts related to these entities. The case study comprises a distribution network with 33 buses managed by VPP, which comprises several kinds of distributed resources, such as photovoltaic, CHP, fuel cells, wind turbines, biomass, small hydro, municipal solid waste, demand response, and storage units.
Resumo:
The goal of this project, one of the proposals of the EPS@ISEP 2014 Spring, was to develop an Aquaponics System. Over recent years Aquaponics systems have received increased attention due to its possibilities in helping reduce strain on resources within 1st and 3rd world countries. Aquaponics is the combination of Hydroponics and Aquaculture and mimics a natural environment in order to successfully apply and enhance the understanding of natural cycles within an indoor process. By using this knowledge of natural cycles it was possible to create a system with the capabilities similar to that of a natural environment with the benefits of electronic adaptions to enhance the overall efficiency of the system. The multinational team involved in its development was composed of five students, from five countries and fields of study. This paper covers their solution, involving overall design, the technology involved and the benefits it could bring to the current market. The team was able to achieve the final rendered Computer Aided Design (CAD) drawings, successfully performed all the electronic testing, and designed a solution under budget. Furthermore, the solution presented was deeply studied from the sustainability viewpoint and the team also developed a product specific marketing plan. Finally, the students involved in this project obtained new knowledge and skills.
Resumo:
Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.
Resumo:
Maintaining a high level of data security with a low impact on system performance is more challenging in wireless multimedia applications. Protocols that are used for wireless local area network (WLAN) security are known to significantly degrade performance. In this paper, we propose an enhanced security system for a WLAN. Our new design aims to decrease the processing delay and increase both the speed and throughput of the system, thereby making it more efficient for multimedia applications. Our design is based on the idea of offloading computationally intensive encryption and authentication services to the end systems’ CPUs. The security operations are performed by the hosts’ central processor (which is usually a powerful processor) before delivering the data to a wireless card (which usually has a low-performance processor). By adopting this design, we show that both the delay and the jitter are significantly reduced. At the access point, we improve the performance of network processing hardware for real-time cryptographic processing by using a specialized processor implemented with field-programmable gate array technology. Furthermore, we use enhanced techniques to implement the Counter (CTR) Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP) and the CTR protocol. Our experiments show that it requires timing in the range of 20–40 μs to perform data encryption and authentication on different end-host CPUs (e.g., Intel Core i5, i7, and AMD 6-Core) as compared with 10–50 ms when performed using the wireless card. Furthermore, when compared with the standard WiFi protected access II (WPA2), results show that our proposed security system improved the speed to up to 3.7 times.
Resumo:
Signal-to-interference ratio (SIR) performance of a multiband orthogonal frequency division multiplexing ultra-wideband system with residual timing offset is investigated. To do so, an exact mathematical derivation of the SIR of this system is derived. It becomes obvious that, unlike a cyclic prefixing based system, a zero padding based system is sensitive to residual timing offset.
Resumo:
Sulfadiazine is an antibiotic of the sulfonamide group and is used as a veterinary drug in fish farming. Monitoring it in the tanks is fundamental to control the applied doses and avoid environmental dissemination. Pursuing this goal, we included a novel potentiometric design in a flow-injection assembly. The electrode body was a stainless steel needle veterinary syringe of 0.8-mm inner diameter. A selective membrane of PVC acted as a sensory surface. Its composition, the length of the electrode, and other flow variables were optimized. The best performance was obtained for sensors of 1.5-cm length and a membrane composition of 33% PVC, 66% onitrophenyloctyl ether, 1% ion exchanger, and a small amount of a cationic additive. It exhibited Nernstian slopes of 61.0 mV decade-1 down to 1.0×10-5 mol L-1, with a limit of detection of 3.1×10-6 mol L-1 in flowing media. All necessary pH/ionic strength adjustments were performed online by merging the sample plug with a buffer carrier of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH 4.9. The sensor exhibited the advantages of a fast response time (less than 15 s), long operational lifetime (60 days), and good selectivity for chloride, nitrite, acetate, tartrate, citrate, and ascorbate. The flow setup was successfully applied to the analysis of aquaculture waters. The analytical results were validated against those obtained with liquid chromatography–tandem mass spectrometry procedures. The sampling rate was about 84 samples per hour and recoveries ranged from 95.9 to 106.9%.
Resumo:
4th International Conference on Future Generation Communication Technologies (FGCT 2015), Luton, United Kingdom.
Resumo:
Molecular imprinting is a useful technique for the preparation of functional materials with molecular recognition properties. A Biomimetic Sensor Potentiometric System was developed for assessment of doxycycline (DOX) antibiotic. The molecularly imprinted polymer (MIP) was synthesized by using doxycycline as a template molecule, methacrylic acid (MAA) and/or acrylamide (AA) as a functional monomer and ethylene glycol dimethacrylat (EGDMA) as a cross-linking agent. The sensing elements were fabricated by the inclusion of DOX imprinted polymers in polyvinyl chloride (PVC) matrix. The sensors showed a high selectivity and a sensitive response to the template in aqueous system. Electrochemical evaluation of these sensors under static (batch) mode of operation reveals near-Nernstian response. MIP/MAA membrane sensor was incorporated in flow-through cells and used as detectors for flow injection analysis (FIA) of DOX. The method has the requisite accuracy, sensitivity and precision to assay DOX in tablets and biological fluids.
Resumo:
A theory of free vibrations of discrete fractional order (FO) systems with a finite number of degrees of freedom (dof) is developed. A FO system with a finite number of dof is defined by means of three matrices: mass inertia, system rigidity and FO elements. By adopting a matrix formulation, a mathematical description of FO discrete system free vibrations is determined in the form of coupled fractional order differential equations (FODE). The corresponding solutions in analytical form, for the special case of the matrix of FO properties elements, are determined and expressed as a polynomial series along time. For the eigen characteristic numbers, the system eigen main coordinates and the independent eigen FO modes are determined. A generalized function of visoelastic creep FO dissipation of energy and generalized forces of system with no ideal visoelastic creep FO dissipation of energy for generalized coordinates are formulated. Extended Lagrange FODE of second kind, for FO system dynamics, are also introduced. Two examples of FO chain systems are analyzed and the corresponding eigen characteristic numbers determined. It is shown that the oscillatory phenomena of a FO mechanical chain have analogies to electrical FO circuits. A FO electrical resistor is introduced and its constitutive voltage–current is formulated. Also a function of thermal energy FO dissipation of a FO electrical relation is discussed.