103 resultados para learning for change
Resumo:
In this paper, we foresee the use of Multi-Agent Systems for supporting dynamic and distributed scheduling in Manufacturing Systems. We also envisage the use of Autonomic properties in order to reduce the complexity of managing systems and human interference. By combining Multi-Agent Systems, Autonomic Computing, and Nature Inspired Techniques we propose an approach for the resolution of dynamic scheduling problem, with Case-based Reasoning Learning capabilities. The objective is to permit a system to be able to automatically adopt/select a Meta-heuristic and respective parameterization considering scheduling characteristics. From the comparison of the obtained results with previous results, we conclude about the benefits of its use.
Resumo:
This paper is about PCMAT, an adaptive learning platform for Mathematics in Basic Education schools. Based on a constructivist approach, PCMAT aims at verifying how techniques from adaptive hypermedia systems can improve e-learning based systems. To achieve this goal, PCMAT includes a Pedagogical Model that contains a set of adaptation rules that influence the student-platform interaction. PCMAT was subject to a preliminary testing with students aged between 12 and 14 years old on the subject of direct proportionality. The results from this preliminary test are quite promising as they seem to demonstrate the validity of our proposal.
Resumo:
The aim of this paper is to present an adaptation model for an Adaptive Educational Hypermedia System, PCMAT. The adaptation of the application is based on progressive self-assessment (exercises, tasks, and so on) and applies the constructivist learning theory and the learning styles theory. Our objective is the creation of a better, more adequate adaptation model that takes into account the complexities of different users.
Resumo:
In the work of Paul Auster (Newark, 1947 - ), we find two main themes: the sense of loss and existential drift and the loneliness of the individual fully committed to the work of writing, as if he had been confined to the book that commands his life. However, this second theme is clearly the dominant one because the character's space of solitude may include its own wandering, because this wandering is also often performed inside the four walls of a room, just like it is narrated inside the space of the page and the book. Both in his poetry, essays and fiction, Auster seems to face the work of writing as an actual physical effort of effective construction, as if the words that are aligned in the poem-text were stones to place in a row when building a wall or some other structure in stone.
Resumo:
Introduction: A major focus of data mining process - especially machine learning researches - is to automatically learn to recognize complex patterns and help to take the adequate decisions strictly based on the acquired data. Since imaging techniques like MPI – Myocardial Perfusion Imaging on Nuclear Cardiology, can implicate a huge part of the daily workflow and generate gigabytes of data, there could be advantages on Computerized Analysis of data over Human Analysis: shorter time, homogeneity and consistency, automatic recording of analysis results, relatively inexpensive, etc.Objectives: The aim of this study relates with the evaluation of the efficacy of this methodology on the evaluation of MPI Stress studies and the process of decision taking concerning the continuation – or not – of the evaluation of each patient. It has been pursued has an objective to automatically classify a patient test in one of three groups: “Positive”, “Negative” and “Indeterminate”. “Positive” would directly follow to the Rest test part of the exam, the “Negative” would be directly exempted from continuation and only the “Indeterminate” group would deserve the clinician analysis, so allowing economy of clinician’s effort, increasing workflow fluidity at the technologist’s level and probably sparing time to patients. Methods: WEKA v3.6.2 open source software was used to make a comparative analysis of three WEKA algorithms (“OneR”, “J48” and “Naïve Bayes”) - on a retrospective study using the comparison with correspondent clinical results as reference, signed by nuclear cardiologist experts - on “SPECT Heart Dataset”, available on University of California – Irvine, at the Machine Learning Repository. For evaluation purposes, criteria as “Precision”, “Incorrectly Classified Instances” and “Receiver Operating Characteristics (ROC) Areas” were considered. Results: The interpretation of the data suggests that the Naïve Bayes algorithm has the best performance among the three previously selected algorithms. Conclusions: It is believed - and apparently supported by the findings - that machine learning algorithms could significantly assist, at an intermediary level, on the analysis of scintigraphic data obtained on MPI, namely after Stress acquisition, so eventually increasing efficiency of the entire system and potentially easing both roles of Technologists and Nuclear Cardiologists. In the actual continuation of this study, it is planned to use more patient information and significantly increase the population under study, in order to allow improving system accuracy.
Resumo:
As more and more digital resources are available, finding the appropriate document becomes harder. Thus, a new kind of tools, able to recommend the more appropriated resources according the user needs, becomes even more necessary. The current project implements an intelligent recommendation system for elearning platforms. The recommendations are based on one hand, the performance of the user during the training process and on the other hand, the requests made by the user in the form of search queries. All information necessary for decision-making process of recommendation will be represented in the user model. This model will be updated throughout the target user interaction with the platform.
Resumo:
O aumento do número de recursos digitais disponíveis dificulta a tarefa de pesquisa dos recursos mais relevantes, no sentido de se obter o que é mais relevante. Assim sendo, um novo tipo de ferramentas, capaz de recomendar os recursos mais apropriados às necessidades do utilizador, torna-se cada vez mais necessário. O objetivo deste trabalho de I&D é o de implementar um módulo de recomendação inteligente para plataformas de e-learning. As recomendações baseiam-se, por um lado, no perfil do utilizador durante o processo de formação e, por outro lado, nos pedidos efetuados pelo utilizador, através de pesquisas [Tavares, Faria e Martins, 2012]. O e-learning 3.0 é um projeto QREN desenvolvido por um conjunto de organizações e tem com objetivo principal implementar uma plataforma de e-learning. Este trabalho encontra-se inserido no projeto e-learning 3.0 e consiste no desenvolvimento de um módulo de recomendação inteligente (MRI). O MRI utiliza diferentes técnicas de recomendação já aplicadas noutros sistemas de recomendação. Estas técnicas são utilizadas para criar um sistema de recomendação híbrido direcionado para a plataforma de e-learning. Para representar a informação relevante, sobre cada utilizador, foi construído um modelo de utilizador. Toda a informação necessária para efetuar a recomendação será representada no modelo do utilizador, sendo este modelo atualizado sempre que necessário. Os dados existentes no modelo de utilizador serão utilizados para personalizar as recomendações produzidas. As recomendações estão divididas em dois tipos, a formal e a não formal. Na recomendação formal o objetivo é fazer sugestões relacionadas a um curso específico. Na recomendação não-formal, o objetivo é fazer sugestões mais abrangentes onde as recomendações não estão associadas a nenhum curso. O sistema proposto é capaz de sugerir recursos de aprendizagem, com base no perfil do utilizador, através da combinação de técnicas de similaridade de palavras, um algoritmo de clustering e técnicas de filtragem [Tavares, Faria e Martins, 2012].
Resumo:
A optimização e a aprendizagem em Sistemas Multi-Agente são consideradas duas áreas promissoras mas relativamente pouco exploradas. A optimização nestes ambientes deve ser capaz de lidar com o dinamismo. Os agentes podem alterar o seu comportamento baseando-se em aprendizagem recente ou em objectivos de optimização. As estratégias de aprendizagem podem melhorar o desempenho do sistema, dotando os agentes da capacidade de aprender, por exemplo, qual a técnica de optimização é mais adequada para a resolução de uma classe particular de problemas, ou qual a parametrização é mais adequada em determinado cenário. Nesta dissertação são estudadas algumas técnicas de resolução de problemas de Optimização Combinatória, sobretudo as Meta-heurísticas, e é efectuada uma revisão do estado da arte de Aprendizagem em Sistemas Multi-Agente. É também proposto um módulo de aprendizagem para a resolução de novos problemas de escalonamento, com base em experiência anterior. O módulo de Auto-Optimização desenvolvido, inspirado na Computação Autónoma, permite ao sistema a selecção automática da Meta-heurística a usar no processo de optimização, assim como a respectiva parametrização. Para tal, recorreu-se à utilização de Raciocínio baseado em Casos de modo que o sistema resultante seja capaz de aprender com a experiência adquirida na resolução de problemas similares. Dos resultados obtidos é possível concluir da vantagem da sua utilização e respectiva capacidade de adaptação a novos e eventuais cenários.
Resumo:
Com a crescente associação dos meios tecnológicos aos métodos de ensino, tem-se vindo a verificar uma mudança significativa na forma como o aluno adquire o conhecimento. Os meios digitais tornaram-se num meio cada vez mais apetecível para os alunos e para os professores, que vêem no suporte tecnológico um precioso complemento para utilizar nas suas aulas. O aparecimento do ensino à distância e mais recentemente do e-learning, veio revolucionar a forma como se adquire o conhecimento, deixando de ser importante a hora e o local aonde nos encontramos. Com estes novos tipos de ensino, surgem também os novos tipos de recursos disponíveis. Uns dos recursos tecnológicos em destaque na actualidade são os Objectos de Aprendizagem (OA), pequenos pedaços de informação que podem ser utilizados, reutilizados ou referenciados no apoio tecnológico à aprendizagem. Analisados os conceitos e as características dos OA foi efectuado o levantamento do estado da arte e feito um estudo sobre recursos educativos utilizados na área da Medicina Dentária, sendo realizada uma análise a cada um desses recursos, observando as suas carências e os seus pontos fortes. Posteriormente partiu-se para a realização de um OA que possa servir como suporte ao ensino da Medicina Dentária, mais concretamente sobre a realização de incisões e de suturas durante cirurgias dentárias. A sua validação revelou ser possível a reutilização em diferentes contextos de ensino e aprendizagem.
Resumo:
Não é recente a contribuição das tecnologias de informação e comunicação em processos de ensino/aprendizagem, no sentido da proliferação de conhecimento, de forma fácil e rápida. Com a contínua evolução tecnológica, surgem novos conceitos relativamente a processos de ensino/aprendizagem assentes nessas tecnologias. A aprendizagem por meio de dispositivos móveis, o m-Learning, é um exemplo, sendo um campo de investigação educacional em franca evolução, que explora essencialmente a mobilidade e a interactividade. No âmbito desta dissertação, pretende-se analisar a tecnologia m-Learning, fazendo referência as principais vantagens e desvantagens desta tecnologia. Neste sentido, e por pretendermos dar o nosso contributo ao ensino cabo-verdiano, onde a utilização de tal tecnologia é ainda inexistente, desenvolveu-se a aplicação CV Learning Mobile, um software educativo sobre a “Organização Administrativa de Cabo Verde”, como resultado do estudo efectuado.
Resumo:
Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.
Resumo:
One of the most difficult issues of e-Learning is the students’ assessment. Being this an outstanding task regarding theoretical topics, it becomes even more challenging when the topics under evaluation are practical. ISCAP’s Information Systems Department is composed of about twenty teachers who have been for several years using an e-learning environment (at the moment Moodle 2.3) combined with traditional assessment. They are now planning and implementing a new e-learning assessment strategy. This effort was undertaken in order to evaluate a practical topic (the use of spreadsheets to solve management problems) common to shared courses of several undergraduate degree programs. The same team group is already experienced in the assessment of theoretical information systems topics using the b-learning platform. Therefore, this project works as an extension to previous experiences being the team aware of the additional difficulties due to the practical nature of the topics. This paper describes this project and presents two cycles of the action research methodology, used to conduct the research. The first cycle goal was to produce a database of questions. When it was implemented in order to be used with a pilot group of students, several problems were identified. Subsequently, the second cycle consisted in solving the identified problems preparing the database and all the players to a broader scope implementation. For each cycle, all the phases, its drawbacks and achievements are described. This paper suits all those who are or are planning to be in the process of shifting their assessment strategy from a traditional to one supported by an e-learning platform.
Resumo:
Neste estudo, proponho-me reflectir sobre o conceito de neologismo, com vista a analisar o contributo deste fenómeno para a mudança linguística do português. Discutirei a relevância de alguns dos critérios propostos por Cabré (1993) e pela Rede Panlatina de Terminologia para a identificação do fenómeno neológico, sustentandome na observação de dados linguísticos relacionados com o domínio da aprendizagem electrónica. É meu propósito ponderar as motivações sociolinguísticas da neologia e analisar possíveis implicações deste processo de criação lexical no tecido linguístico português contemporâneo e no contexto educativo do ensino superior.
Resumo:
SMM09 Silesian Moodle Moot Conference 2009 12 - 13 November, Ostrava Sixth annual conference