67 resultados para ART ALGORITHM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work addresses the signal propagation and the fractional-order dynamics during the evolution of a genetic algorithm (GA). In order to investigate the phenomena involved in the GA population evolution, the mutation is exposed to excitation perturbations during some generations and the corresponding fitness variations are evaluated. Three distinct fitness functions are used to study their influence in the GA dynamics. The input and output signals are studied revealing a fractional-order dynamic evolution, characteristic of a long-term system memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consolidation consists in scheduling multiple virtual machines onto fewer servers in order to improve resource utilization and to reduce operational costs due to power consumption. However, virtualization technologies do not offer performance isolation, causing applications’ slowdown. In this work, we propose a performance enforcing mechanism, composed of a slowdown estimator, and a interference- and power-aware scheduling algorithm. The slowdown estimator determines, based on noisy slowdown data samples obtained from state-of-the-art slowdown meters, if tasks will complete within their deadlines, invoking the scheduling algorithm if needed. When invoked, the scheduling algorithm builds performance and power aware virtual clusters to successfully execute the tasks. We conduct simulations injecting synthetic jobs which characteristics follow the last version of the Google Cloud tracelogs. The results indicate that our strategy can be efficiently integrated with state-of-the-art slowdown meters to fulfil contracted SLAs in real-world environments, while reducing operational costs in about 12%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The container loading problem (CLP) is a combinatorial optimization problem for the spatial arrangement of cargo inside containers so as to maximize the usage of space. The algorithms for this problem are of limited practical applicability if real-world constraints are not considered, one of the most important of which is deemed to be stability. This paper addresses static stability, as opposed to dynamic stability, looking at the stability of the cargo during container loading. This paper proposes two algorithms. The first is a static stability algorithm based on static mechanical equilibrium conditions that can be used as a stability evaluation function embedded in CLP algorithms (e.g. constructive heuristics, metaheuristics). The second proposed algorithm is a physical packing sequence algorithm that, given a container loading arrangement, generates the actual sequence by which each box is placed inside the container, considering static stability and loading operation efficiency constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider the problem of assigning implicit-deadline sporadic tasks on a heterogeneous multiprocessor platform comprising a constant number (denoted by t) of distinct types of processors—such a platform is referred to as a t-type platform. We present two algorithms, LPGIM and LPGNM, each providing the following guarantee. For a given t-type platform and a task set, if there exists a task assignment such that tasks can be scheduled to meet their deadlines by allowing them to migrate only between processors of the same type (intra-migrative), then: (i) LPGIM succeeds in finding such an assignment where the same restriction on task migration applies (intra-migrative) but given a platform in which only one processor of each type is 1 + α × t-1/t times faster and (ii) LPGNM succeeds in finding a task assignment where tasks are not allowed to migrate between processors (non-migrative) but given a platform in which every processor is 1 + α times faster. The parameter α is a property of the task set; it is the maximum of all the task utilizations that are no greater than one. To the best of our knowledge, for t-type heterogeneous multiprocessors: (i) for the problem of intra-migrative task assignment, no previous algorithm exists with a proven bound and hence our algorithm, LPGIM, is the first of its kind and (ii) for the problem of non-migrative task assignment, our algorithm, LPGNM, has superior performance compared to state-of-the-art.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy consumption is one of the major issues for modern embedded systems. Early, power saving approaches mainly focused on dynamic power dissipation, while neglecting the static (leakage) energy consumption. However, technology improvements resulted in a case where static power dissipation increasingly dominates. Addressing this issue, hardware vendors have equipped modern processors with several sleep states. We propose a set of leakage-aware energy management approaches that reduce the energy consumption of embedded real-time systems while respecting the real-time constraints. Our algorithms are based on the race-to-halt strategy that tends to run the system at top speed with an aim to create long idle intervals, which are used to deploy a sleep state. The effectiveness of our algorithms is illustrated with an extensive set of simulations that show an improvement of up to 8% reduction in energy consumption over existing work at high utilization. The complexity of our algorithms is smaller when compared to state-of-the-art algorithms. We also eliminate assumptions made in the related work that restrict the practical application of the respective algorithms. Moreover, a novel study about the relation between the use of sleep intervals and the number of pre-emptions is also presented utilizing a large set of simulation results, where our algorithms reduce the experienced number of pre-emptions in all cases. Our results show that sleep states in general can save up to 30% of the overall number of pre-emptions when compared to the sleep-agnostic earliest-deadline-first algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, many real-time operating systems discretize the time relying on a system time unit. To take this behavior into account, real-time scheduling algorithms must adopt a discrete-time model in which both timing requirements of tasks and their time allocations have to be integer multiples of the system time unit. That is, tasks cannot be executed for less than one time unit, which implies that they always have to achieve a minimum amount of work before they can be preempted. Assuming such a discrete-time model, the authors of Zhu et al. (Proceedings of the 24th IEEE international real-time systems symposium (RTSS 2003), 2003, J Parallel Distrib Comput 71(10):1411–1425, 2011) proposed an efficient “boundary fair” algorithm (named BF) and proved its optimality for the scheduling of periodic tasks while achieving full system utilization. However, BF cannot handle sporadic tasks due to their inherent irregular and unpredictable job release patterns. In this paper, we propose an optimal boundary-fair scheduling algorithm for sporadic tasks (named BF TeX ), which follows the same principle as BF by making scheduling decisions only at the job arrival times and (expected) task deadlines. This new algorithm was implemented in Linux and we show through experiments conducted upon a multicore machine that BF TeX outperforms the state-of-the-art discrete-time optimal scheduler (PD TeX ), benefiting from much less scheduling overheads. Furthermore, it appears from these experimental results that BF TeX is barely dependent on the length of the system time unit while PD TeX —the only other existing solution for the scheduling of sporadic tasks in discrete-time systems—sees its number of preemptions, migrations and the time spent to take scheduling decisions increasing linearly when improving the time resolution of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider scheduling of real-time tasks on a multiprocessor where migration is forbidden. Specifically, consider the problem of determining a task-to-processor assignment for a given collection of implicit-deadline sporadic tasks upon a multiprocessor platform in which there are two distinct types of processors. For this problem, we propose a new algorithm, LPC (task assignment based on solving a Linear Program with Cutting planes). The algorithm offers the following guarantee: for a given task set and a platform, if there exists a feasible task-to-processor assignment, then LPC succeeds in finding such a feasible task-to-processor assignment as well but on a platform in which each processor is 1.5 × faster and has three additional processors. For systems with a large number of processors, LPC has a better approximation ratio than state-of-the-art algorithms. To the best of our knowledge, this is the first work that develops a provably good real-time task assignment algorithm using cutting planes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

“Many-core” systems based on a Network-on-Chip (NoC) architecture offer various opportunities in terms of performance and computing capabilities, but at the same time they pose many challenges for the deployment of real-time systems, which must fulfill specific timing requirements at runtime. It is therefore essential to identify, at design time, the parameters that have an impact on the execution time of the tasks deployed on these systems and the upper bounds on the other key parameters. The focus of this work is to determine an upper bound on the traversal time of a packet when it is transmitted over the NoC infrastructure. Towards this aim, we first identify and explore some limitations in the existing recursive-calculus-based approaches to compute the Worst-Case Traversal Time (WCTT) of a packet. Then, we extend the existing model by integrating the characteristics of the tasks that generate the packets. For this extended model, we propose an algorithm called “Branch and Prune” (BP). Our proposed method provides tighter and safe estimates than the existing recursive-calculus-based approaches. Finally, we introduce a more general approach, namely “Branch, Prune and Collapse” (BPC) which offers a configurable parameter that provides a flexible trade-off between the computational complexity and the tightness of the computed estimate. The recursive-calculus methods and BP present two special cases of BPC when a trade-off parameter is 1 or ∞, respectively. Through simulations, we analyze this trade-off, reason about the implications of certain choices, and also provide some case studies to observe the impact of task parameters on the WCTT estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quinoxaline derivatives are an important class of heterocycle compounds, where N replaces some carbon atoms in the ring of naphthalene. Its molecular formula is C8H6N2, formed by the fusion of two aromatic rings, benzene and pyrazine. It is rare in natural state, but their synthesis is easy to perform. In this review the State of the Art will be presented, which includes a summary of the progress made over the past years in the knowledge of the structure and mechanism of the quinoxaline and quinoxaline derivatives, associated medical and biomedical value as well as industrial value. Modifying quinoxaline structure it is possible to obtain a wide variety of biomedical applications, namely antimicrobial activities and chronic and metabolic diseases treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a step count algorithm designed to work in real-time using low computational power. This proposal is our first step for the development of an indoor navigation system, based on Pedestrian Dead Reckoning (PDR). We present two approaches to solve this problem and compare them based in their error on step counting, as well as, the capability of their use in a real time system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an ankle mounted Inertial Navigation System (INS) used to estimate the distance traveled by a pedestrian. This distance is estimated by the number of steps given by the user. The proposed method is based on force sensors to enhance the results obtained from an INS. Experimental results have shown that, depending on the step frequency, the traveled distance error varies between 2.7% and 5.6%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática - Área de Especialização em Arquiteturas, Sistemas e Redes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No panorama socioeconómico atual, a contenção de despesas e o corte no financiamento de serviços secundários consumidores de recursos conduzem à reformulação de processos e métodos das instituições públicas, que procuram manter a qualidade de vida dos seus cidadãos através de programas que se mostrem mais eficientes e económicos. O crescimento sustentado das tecnologias móveis, em conjunção com o aparecimento de novos paradigmas de interação pessoa-máquina com recurso a sensores e sistemas conscientes do contexto, criaram oportunidades de negócio na área do desenvolvimento de aplicações com vertente cívica para indivíduos e empresas, sensibilizando-os para a disponibilização de serviços orientados ao cidadão. Estas oportunidades de negócio incitaram a equipa do projeto a desenvolver uma plataforma de notificação de problemas urbanos baseada no seu sistema de informação geográfico para entidades municipais. O objetivo principal desta investigação foca a idealização, conceção e implementação de uma solução completa de notificação de problemas urbanos de caráter não urgente, distinta da concorrência pela facilidade com que os cidadãos são capazes de reportar situações que condicionam o seu dia-a-dia. Para alcançar esta distinção da restante oferta, foram realizados diversos estudos para determinar características inovadoras a implementar, assim como todas as funcionalidades base expectáveis neste tipo de sistemas. Esses estudos determinaram a implementação de técnicas de demarcação manual das zonas problemáticas e reconhecimento automático do tipo de problema reportado nas imagens, ambas desenvolvidas no âmbito deste projeto. Para a correta implementação dos módulos de demarcação e reconhecimento de imagem, foram feitos levantamentos do estado da arte destas áreas, fundamentando a escolha de métodos e tecnologias a integrar no projeto. Neste contexto, serão apresentadas em detalhe as várias fases que constituíram o processo de desenvolvimento da plataforma, desde a fase de estudo e comparação de ferramentas, metodologias, e técnicas para cada um dos conceitos abordados, passando pela proposta de um modelo de resolução, até à descrição pormenorizada dos algoritmos implementados. Por último, é realizada uma avaliação de desempenho ao par algoritmo/classificador desenvolvido, através da definição de métricas que estimam o sucesso ou insucesso do classificador de objetos. A avaliação é feita com base num conjunto de imagens de teste, recolhidas manualmente em plataformas públicas de notificação de problemas, confrontando os resultados obtidos pelo algoritmo com os resultados esperados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent changes concerning the consumers’ active participation in the efficient management of load devices for one’s own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of the Smart Grid concept into the electric grid brings to the need for an active participation of small and medium players. This active participation can be achieved using decentralized decisions, in which the end consumer can manage loads regarding the Smart Grid needs. The management of loads must handle the users’ preferences, wills and needs. However, the users’ preferences, wills and needs can suffer changes when faced with exceptional events. This paper proposes the integration of exceptional events into the SCADA House Intelligent Management (SHIM) system developed by the authors, to handle machine learning issues in the domestic consumption context. An illustrative application and learning case study is provided in this paper.