45 resultados para imaged-based control scheme


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The shifted Legendre orthogonal polynomials are used for the numerical solution of a new formulation for the multi-dimensional fractional optimal control problem (M-DFOCP) with a quadratic performance index. The fractional derivatives are described in the Caputo sense. The Lagrange multiplier method for the constrained extremum and the operational matrix of fractional integrals are used together with the help of the properties of the shifted Legendre orthonormal polynomials. The method reduces the M-DFOCP to a simpler problem that consists of solving a system of algebraic equations. For confirming the efficiency and accuracy of the proposed scheme, some test problems are implemented with their approximate solutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work the mission control and supervision system developed for the ROAZ Autonomous Surface Vehicle is presented. Complexity in mission requirements coupled with flexibility lead to the design of a modular hierarchical mission control system based on hybrid systems control. Monitoring and supervision control for a vehicle such as ROAZ mission is not an easy task using tools with low complexity and yet powerful enough. A set of tools were developed to perform both on board mission control and remote planning and supervision. “ROAZ- Mission Control” was developed to be used in support to bathymetric and security missions performed in river and at seas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper analyzes the signals captured during impacts and vibrations of a mechanical manipulator. The Fourier Transform of eighteen different signals are calculated and approximated by trendlines based on a power law formula. A sensor classification scheme based on the frequency spectrum behavior is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, power systems have experienced many changes in their paradigm. The introduction of new players in the management of distributed generation leads to the decentralization of control and decision-making, so that each player is able to play in the market environment. In the new context, it will be very relevant that aggregator players allow midsize, small and micro players to act in a competitive environment. In order to achieve their objectives, virtual power players and single players are required to optimize their energy resource management process. To achieve this, it is essential to have financial resources capable of providing access to appropriate decision support tools. As small players have difficulties in having access to such tools, it is necessary that these players can benefit from alternative methodologies to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), and intended to support smaller players. In this case the present methodology uses a training set that is created using energy resource scheduling solutions obtained using a mixed-integer linear programming (MIP) approach as the reference optimization methodology. The trained network is used to obtain locational marginal prices in a distribution network. The main goal of the paper is to verify the accuracy of the ANN based approach. Moreover, the use of a single ANN is compared with the use of two or more ANN to forecast the locational marginal price.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spread and globalization of distributed generation (DG) in recent years has should highly influence the changes that occur in Electricity Markets (EMs). DG has brought a large number of new players to take action in the EMs, therefore increasing the complexity of these markets. Simulation based on multi-agent systems appears as a good way of analyzing players’ behavior and interactions, especially in a coalition perspective, and the effects these players have on the markets. MASCEM – Multi-Agent System for Competitive Electricity Markets was created to permit the study of the market operation with several different players and market mechanisms. MASGriP – Multi-Agent Smart Grid Platform is being developed to facilitate the simulation of micro grid (MG) and smart grid (SG) concepts with multiple different scenarios. This paper presents an intelligent management method for MG and SG. The simulation of different methods of control provides an advantage in comparing different possible approaches to respond to market events. Players utilize electric vehicles’ batteries and participate in Demand Response (DR) contracts, taking advantage on the best opportunities brought by the use of all resources, to improve their actions in response to MG and/or SG requests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The operation of power systems in a Smart Grid (SG) context brings new opportunities to consumers as active players, in order to fully reach the SG advantages. In this context, concepts as smart homes or smart buildings are promising approaches to perform the optimization of the consumption, while reducing the electricity costs. This paper proposes an intelligent methodology to support the consumption optimization of an industrial consumer, which has a Combined Heat and Power (CHP) facility. A SCADA (Supervisory Control and Data Acquisition) system developed by the authors is used to support the implementation of the proposed methodology. An optimization algorithm implemented in the system in order to perform the determination of the optimal consumption and CHP levels in each instant, according to the Demand Response (DR) opportunities. The paper includes a case study with several scenarios of consumption and heat demand in the context of a DR event which specifies a maximum demand level for the consumer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The future scenarios for operation of smart grids are likely to include a large diversity of players, of different types and sizes. With control and decision making being decentralized over the network, intelligence should also be decentralized so that every player is able to play in the market environment. In the new context, aggregator players, enabling medium, small, and even micro size players to act in a competitive environment, will be very relevant. Virtual Power Players (VPP) and single players must optimize their energy resource management in order to accomplish their goals. This is relatively easy to larger players, with financial means to have access to adequate decision support tools, to support decision making concerning their optimal resource schedule. However, the smaller players have difficulties in accessing this kind of tools. So, it is required that these smaller players can be offered alternative methods to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), intended to support smaller players’ resource scheduling. The used methodology uses a training set that is built using the energy resource scheduling solutions obtained with a reference optimization methodology, a mixed-integer non-linear programming (MINLP) in this case. The trained network is able to achieve good schedule results requiring modest computational means.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the application of an intelligent tutoring approach to delivery training in diagnosis procedures of a Power System. In particular, the mechanisms implemented by the training tool to support the trainees are detailed. This tool is part of an architecture conceived to integrate Power Systems tools in a Power System Control Centre, based on an Ambient Intelligent paradigm. The present work is integrated in the CITOPSY project which main goal is to achieve a better integration between operators and control room applications, considering the needs of people, customizing requirements and forecasting behaviors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an architecture conceived to integrate Power Sys-tems tools in a Power System Control Centre, based on an Ambient Intelligent (AmI) paradigm. This architecture is an instantiation of the generic architecture proposed in [1] for developing systems that interact with AmI environments. This architecture has been proposed as a consequence of a methodology for the inclu-sion of Artificial Intelligence in AmI environments (ISyRAmI - Intelligent Sys-tems Research for Ambient Intelligence). The architecture presented in the paper will be able to integrate two applications in the control room of a power system transmission network. The first is SPARSE expert system, used to get diagnosis of incidents and to support power restoration. The second application is an Intelligent Tutoring System (ITS) incorporating two training tools. The first tutoring tool is used to train operators to get the diagnosis of incidents. The second one is another tutoring tool used to train operators to perform restoration procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activity of Control Center operators is important to guarantee the effective performance of Power Systems. Operators’ actions are crucial to deal with incidents, especially severe faults like blackouts. In this paper, we present an Intelligent Tutoring approach for training Portuguese Control Center operators in tasks like incident analysis and diagnosis, and service restoration of Power Systems. Intelligent Tutoring System (ITS) approach is used in the training of the operators, having into account context awareness and the unobtrusive integration in the working environment. Several Artificial Intelligence techniques were criteriously used and combined together to obtain an effective Intelligent Tutoring environment, namely Multiagent Systems, Neural Networks, Constraint-based Modeling, Intelligent Planning, Knowledge Representation, Expert Systems, User Modeling, and Intelligent User Interfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Devido à grande quantidade de dados disponíveis na Internet, um dos maiores desafios no mundo virtual é recomendar informação aos seus utilizadores. Por outro lado, esta grande quantidade de dados pode ser útil para melhorar recomendações se for anotada e interligada por dados de proveniência. Neste trabalho é abordada a temática de recomendação de (alteração de) permissões acesso sobre recursos ao seu proprietário, ao invés da recomendação do próprio recurso a um potencial consumidor/leitor. Para permitir a recomendação de acessos a um determinado recurso, independentemente do domínio onde o mesmo se encontra alojado, é essencial a utilização de sistemas de controlo de acessos distribuídos, mecanismos de rastreamento de recursos e recomendação independentes do domínio. Assim sendo, o principal objectivo desta tese é utilizar informação de rastreamento de acções realizadas sobre recursos (i.e. informação que relaciona recursos e utilizadores através da Web independentemente do domínio de rede) e utiliza-la para permitir a recomendação de privilégios de acesso a esses recursos por outros utilizadores. Ao longo do desenvolvimento da tese resultaram as seguintes contribuições: A análise do estado da arte de recomendação e de sistemas de recomendação potencialmente utilizáveis na recomendação de privilégios (secção 2.3); A análise do estado da arte de mecanismos de rastreamento e proveniência de informação (secção 2.2); A proposta de um sistema de recomendação de privilégios de acesso independente do domínio e a sua integração no sistema de controlo de acessos proposto anteriormente (secção 3.1); Levantamento, análise e especificação da informação relativa a privilégios de acesso, para ser utilizada no sistema de recomendação (secção 2.1); A especificação da informação resultante do rastreamento de acções para ser utilizada na recomendação de privilégios de acesso (secção 4.1.1); A especificação da informação de feedback resultante do sistema de recomendação de acessos e sua reutilização no sistema de recomendação(secção 4.1.3); A especificação, implementação e integração do sistema de recomendação de privilégios de acesso na plataforma já existente (secção 4.2 e secção 4.3); Realização de experiências de avaliação ao sistema de recomendação de privilégios, bem como a análise dos resultados obtidos (secção 5).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electroanalytical methods based on square-wave adsorptive-stripping voltammetry (SWAdSV) and flow-injection analysis with square-wave adsorptive-stripping voltammetric detection (FIA-SWAdSV) were developed for the determination of fluoxetine (FXT). The methods were based on the reduction of FXT at a mercury drop electrode at -1.2 V versus Ag/AgCl, in a phosphate buffer of pH 12.0, and on the possibility of accumulating the compound at the electrode surface. The SWAdSV method was successfully applied in the quantification of FXT in pharmaceutical products, human serum samples, and in drug dissolution studies. Because the presence of dissolved oxygen did not interfere significantly with the analysis, it was possible to quantify FXT in several pharmaceutical products using FIA-SWAdSV. This method enables analysis of up to 120 samples per hour at reduced costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future distribution systems will have to deal with an intensive penetration of distributed energy resources ensuring reliable and secure operation according to the smart grid paradigm. SCADA (Supervisory Control and Data Acquisition) is an essential infrastructure for this evolution. This paper proposes a new conceptual design of an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). This SCADA model is used to support the energy resource management undertaken by a distribution network operator (DNO). Resource management considers all the involved costs, power flows, and electricity prices, allowing the use of network reconfiguration and load curtailment. Locational Marginal Prices (LMP) are evaluated and used in specific situations to apply Demand Response (DR) programs on a global or a local basis. The paper includes a case study using a 114 bus distribution network and load demand based on real data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we analyse the ability of Profibus fieldbus to cope with the real-time requirements of a Distributed Computer Control System (DCCS), where messages associated to discrete events must be made available within a maximum bound time. Our methodology is based on the knowledge of real-time traffic characteristics, setting the network parameters in order to cope with timing requirements. Since non-real-time traffic characteristics are usually unknown at the design stage, we consider an operational profile where, constraining non-real-time traffic at the application level, we assure that realtime requirements are met.