26 resultados para POLYNOMIAL CHAOS
Resumo:
Advances in technology have produced more and more intricate industrial systems, such as nuclear power plants, chemical centers and petroleum platforms. Such complex plants exhibit multiple interactions among smaller units and human operators, rising potentially disastrous failure, which can propagate across subsystem boundaries. This paper analyzes industrial accident data-series in the perspective of statistical physics and dynamical systems. Global data is collected from the Emergency Events Database (EM-DAT) during the time period from year 1903 up to 2012. The statistical distributions of the number of fatalities caused by industrial accidents reveal Power Law (PL) behavior. We analyze the evolution of the PL parameters over time and observe a remarkable increment in the PL exponent during the last years. PL behavior allows prediction by extrapolation over a wide range of scales. In a complementary line of thought, we compare the data using appropriate indices and use different visualization techniques to correlate and to extract relationships among industrial accident events. This study contributes to better understand the complexity of modern industrial accidents and their ruling principles.
Resumo:
A theory of free vibrations of discrete fractional order (FO) systems with a finite number of degrees of freedom (dof) is developed. A FO system with a finite number of dof is defined by means of three matrices: mass inertia, system rigidity and FO elements. By adopting a matrix formulation, a mathematical description of FO discrete system free vibrations is determined in the form of coupled fractional order differential equations (FODE). The corresponding solutions in analytical form, for the special case of the matrix of FO properties elements, are determined and expressed as a polynomial series along time. For the eigen characteristic numbers, the system eigen main coordinates and the independent eigen FO modes are determined. A generalized function of visoelastic creep FO dissipation of energy and generalized forces of system with no ideal visoelastic creep FO dissipation of energy for generalized coordinates are formulated. Extended Lagrange FODE of second kind, for FO system dynamics, are also introduced. Two examples of FO chain systems are analyzed and the corresponding eigen characteristic numbers determined. It is shown that the oscillatory phenomena of a FO mechanical chain have analogies to electrical FO circuits. A FO electrical resistor is introduced and its constitutive voltage–current is formulated. Also a function of thermal energy FO dissipation of a FO electrical relation is discussed.
Resumo:
In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades, due to the progress in the area of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. Having these ideas in mind, the paper discusses a FC perspective in the study of the dynamics and control of some distributed parameter systems.
Resumo:
A new method for the study and optimization of manu«ipulator trajectories is developed. The novel feature resides on the modeling formulation. Standard system desciptions are based on a set of differential equations which, in general, require laborious computations and may be difficult to analyze. Moreover, the derived algorithms are suited to "deterministic" tasks, such as those appearing in a repetitivework, and are not well adapted to a "random" operation that occurs in intelligent systems interacting with a non-structured and changing environment. These facts motivate the development of alternative models based on distinct concepts. The proposed embedding of statistics and Fourier trasnform gives a new perspective towards the calculation and optimization of the robot trajectories in manipulating tasks.
Resumo:
The theory of fractional calculus goes back to the beginning of thr throry of differential calculus but its inherent complexity postponed the applications of the associated concepts. In the last decade the progress in the areas of chaos and fractals revealed subtle relationships with the fractional calculus leading to an increasing interest in the development of the new paradigm. In the area of automaticcontrol preliminary work has already been carried out but the proposed algorithms are restricted to the frequency domain. The paper discusses the design of fractional-order discrete-time controllers. The algorithms studied adopt the time domein, which makes them suited for z-transform analusis and discrete-time implementation. The performance of discrete-time fractional-order controllers with linear and non-linear systems is also investigated.
Resumo:
Many tasks involving manipulation require cooperation between robots. Meanwhile, it is necessary to determine the adequate values for the robot parameters to obtain a good performence. This paper discusses several aspects related with the manipulability of two co-operative robots when handling objects with different lengths and orientations. In this line of thought, a numerical tool is developed for the calculation and the graphical visualization of the manipulability measure.
Resumo:
O solo é um recurso multifuncional e vital para a humanidade, apresentando funções ecológicas, técnico-industriais, socioeconómicas e culturais, estabelecendo um vasto capital natural insubstituível. Face à sua taxa de degradação potencialmente rápida que, devido ao crescente desenvolvimento económico e incremento da população mundial, tem vindo a aumentar nas últimas décadas, o solo é, atualmente, um recurso finito e limitado. Devido a esta problemática, o presente documento visa abordar a progressiva preocupação sobre as questões geoambientais e toda a investigação que as envolvem, avaliando o modo como os contaminantes se dispersam pelo solo nas diferentes fases do mesmo (fases sólida, líquida e gasosa). A parte experimental centrou-se na análise da adsorção do benzeno, a partir da determinação das isotérmicas de adsorção. Para tal, foram previamente preparados reatores com calcário, sendo alguns deles previamente contaminados com um biocombustível, biodiesel, a uma concentração constante. Este processo foi monitorizado com base na evolução temporal da concentração na fase gasosa, através da cromatografia gasosa. De entre os objetivos, procurou-se analisar a distribuição dos contaminantes pelas fases constituintes do solo, ajustar os dados experimentais obtidos os modelos matemáticos de Langmuir, Freundlich e Polinomial, e verificar e discutir as soluções mais adequadas.
Resumo:
We study the peculiar dynamical features of a fractional derivative of complex-order network. The network is composed of two unidirectional rings of cells, coupled through a "buffer" cell. The network has a Z3 × Z5 cyclic symmetry group. The complex derivative Dα±jβ, with α, β ∈ R+ is a generalization of the concept of integer order derivative, where α = 1, β = 0. Each cell is modeled by the Chen oscillator. Numerical simulations of the coupled cell system associated with the network expose patterns such as equilibria, periodic orbits, relaxation oscillations, quasiperiodic motion, and chaos, in one or in two rings of cells. In addition, fixing β = 0.8, we perceive differences in the qualitative behavior of the system, as the parameter c ∈ [13, 24] of the Chen oscillator and/or the real part of the fractional derivative, α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, are varied. Some patterns produced by the coupled system are constrained by the network architecture, but other features are only understood in the light of the internal dynamics of each cell, in this case, the Chen oscillator. What is more important, architecture and/or internal dynamics?
Resumo:
Num universo despovoado de formas geométricas perfeitas, onde proliferam superfícies irregulares, difíceis de representar e de medir, a geometria fractal revelou-se um instrumento poderoso no tratamento de fenómenos naturais, até agora considerados erráticos, imprevisíveis e aleatórios. Contudo, nem tudo na natureza é fractal, o que significa que a geometria euclidiana continua a ser útil e necessária, o que torna estas geometrias complementares. Este trabalho centra-se no estudo da geometria fractal e na sua aplicação a diversas áreas científicas, nomeadamente, à engenharia. São abordadas noções de auto-similaridade (exata, aproximada), formas, dimensão, área, perímetro, volume, números complexos, semelhança de figuras, sucessão e iterações relacionadas com as figuras fractais. Apresentam-se exemplos de aplicação da geometria fractal em diversas áreas do saber, tais como física, biologia, geologia, medicina, arquitetura, pintura, engenharia eletrotécnica, mercados financeiros, entre outras. Conclui-se que os fractais são uma ferramenta importante para a compreensão de fenómenos nas mais diversas áreas da ciência. A importância do estudo desta nova geometria, é avassaladora graças à sua profunda relação com a natureza e ao avançado desenvolvimento tecnológico dos computadores.
Resumo:
A manutenção é uma área extremamente importante, principalmente na indústria. Devidamente organizada, permitirá um fluxo produtivo devidamente planeado e executado, que permitirá a qualquer empresa manter o nível de facturação desejado e o prazo de entrega acordado com os clientes. De outra forma, poderá originar o caos. No entanto, os desafios de gestão da produção mais correntes, nomeadamente através do Lean Manufacturing, passam a exigir um pouco mais do que uma simples manutenção. Torna-se obrigatório fazer análises económicas que permitam averiguar quando cada equipamento passa a exigir custos de manutenção excessivos, os quais poderão obrigar a um recondicionamento mais acentuado do equipamento, o qual pode passar inclusivamente por uma melhoria da sua performance. Nestes casos, terá que existir uma “cumplicidade” entre a Direcção de Produção e a Manutenção, no sentido de averiguar o melhor momento para proceder a uma melhoria do equipamento, numa perspectiva de funcionamento global em linha de produção, adaptando-o à performance que será exigida ao conjunto. Neste domínio, o Projecto passa a prestar um serviço valiosíssimo à empresa, integrando-se no conjunto Produção + Manutenção, criando valor na intervenção, através do desenvolvimento de um trabalho que permite não só repor o estado natural da produção, mas sim promover uma melhoria sustentada da mesma. Este trabalho pretende reflectir e avaliar a relevância do Projecto neste tipo de operações, contribuindo de uma forma sistemática e sustentada para a melhoria contínua dos processos de fabrico. É apresentado um caso de estudo que pretende validar todo o desenvolvimento anteriormente realizado na matéria.