48 resultados para Multiple Object Tracking
Resumo:
Knowing exactly where a mobile entity is and monitoring its trajectory in real-time has recently attracted a lot of interests from both academia and industrial communities, due to the large number of applications it enables, nevertheless, it is nowadays one of the most challenging problems from scientific and technological standpoints. In this work we propose a tracking system based on the fusion of position estimations provided by different sources, that are combined together to get a final estimation that aims at providing improved accuracy with respect to those generated by each system individually. In particular, exploiting the availability of a Wireless Sensor Network as an infrastructure, a mobile entity equipped with an inertial system first gets the position estimation using both a Kalman Filter and a fully distributed positioning algorithm (the Enhanced Steepest Descent, we recently proposed), then combines the results using the Simple Convex Combination algorithm. Simulation results clearly show good performance in terms of the final accuracy achieved. Finally, the proposed technique is validated against real data taken from an inertial sensor provided by THALES ITALIA.
Resumo:
Wireless sensor networks (WSNs) emerge as underlying infrastructures for new classes of large-scale networked embedded systems. However, WSNs system designers must fulfill the quality-of-service (QoS) requirements imposed by the applications (and users). Very harsh and dynamic physical environments and extremely limited energy/computing/memory/communication node resources are major obstacles for satisfying QoS metrics such as reliability, timeliness, and system lifetime. The limited communication range of WSN nodes, link asymmetry, and the characteristics of the physical environment lead to a major source of QoS degradation in WSNs-the ldquohidden node problem.rdquo In wireless contention-based medium access control (MAC) protocols, when two nodes that are not visible to each other transmit to a third node that is visible to the former, there will be a collision-called hidden-node or blind collision. This problem greatly impacts network throughput, energy-efficiency and message transfer delays, and the problem dramatically increases with the number of nodes. This paper proposes H-NAMe, a very simple yet extremely efficient hidden-node avoidance mechanism for WSNs. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes that scales to multiple clusters via a cluster grouping strategy that guarantees no interference between overlapping clusters. Importantly, H-NAMe is instantiated in IEEE 802.15.4/ZigBee, which currently are the most widespread communication technologies for WSNs, with only minor add-ons and ensuring backward compatibility with their protocols standards. H-NAMe was implemented and exhaustively tested using an experimental test-bed based on ldquooff-the-shelfrdquo technology, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. H-NAMe effectiveness was also demonstrated in a target tracking application with mobile robots - over a WSN deployment.
Resumo:
We propose a wireless medium access control (MAC) protocol that provides static-priority scheduling of messages in a guaranteed collision-free manner. Our protocol supports multiple broadcast domains, resolves the wireless hidden terminal problem and allows for parallel transmissions across a mesh network. Arbitration of messages is achieved without the notion of a master coordinating node, global clock synchronization or out-of-band signaling. The protocol relies on bit-dominance similar to what is used in the CAN bus except that in order to operate on a wireless physical layer, nodes are not required to receive incoming bits while transmitting. The use of bit-dominance efficiently allows for a much larger number of priorities than would be possible using existing wireless solutions. A MAC protocol with these properties enables schedulability analysis of sporadic message streams in wireless multihop networks.
Resumo:
Wireless Sensor Networks (WSNs) are highly distributed systems in which resource allocation (bandwidth, memory) must be performed efficiently to provide a minimum acceptable Quality of Service (QoS) to the regions where critical events occur. In fact, if resources are statically assigned independently from the location and instant of the events, these resources will definitely be misused. In other words, it is more efficient to dynamically grant more resources to sensor nodes affected by critical events, thus providing better network resource management and reducing endto- end delays of event notification and tracking. In this paper, we discuss the use of a WSN management architecture based on the active network management paradigm to provide the real-time tracking and reporting of dynamic events while ensuring efficient resource utilization. The active network management paradigm allows packets to transport not only data, but also program scripts that will be executed in the nodes to dynamically modify the operation of the network. This presumes the use of a runtime execution environment (middleware) in each node to interpret the script. We consider hierarchical (e.g. cluster-tree, two-tiered architecture) WSN topologies since they have been used to improve the timing performance of WSNs as they support deterministic medium access control protocols.
Resumo:
Dynamical systems theory in this work is used as a theoretical language and tool to design a distributed control architecture for a team of three robots that must transport a large object and simultaneously avoid collisions with either static or dynamic obstacles. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constraints are modeled as attractors (i.e. asymptotic stable states) of the behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotical stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
In this paper dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for a team of two robots that must transport a large object and simultaneously avoid collisions with obstacles (either static or dynamic). This work extends the previous work with two robots (see [1] and [5]). However here we demonstrate that it’s possible to simplify the architecture presented in [1] and [5] and reach an equally stable global behavior. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constrains are modeled as attractors (i.e. asymptotic stable states) of a behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotic stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
Dynamical systems theory is used here as a theoretical language and tool to design a distributed control architecture for a team of two mobile robots that must transport a long object and simultaneously avoid obstacles. In this approach the level of modeling is at the level of behaviors. A “dynamics” of behavior is defined over a state space of behavioral variables (heading direction and path velocity). The environment is also modeled in these terms by representing task constraints as attractors (i.e. asymptotically stable states) or reppelers (i.e. unstable states) of behavioral dynamics. For each robot attractors and repellers are combined into a vector field that governs the behavior. The resulting dynamical systems that generate the behavior of the robots may be nonlinear. By design the systems are tuned so that the behavioral variables are always very close to one attractor. Thus the behavior of each robot is controled by a time series of asymptotically stable states. Computer simulations support the validity of our dynamic model architectures.
Resumo:
The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. During the last couple of years many heuristic procedures have been developed for this problem, but still these procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
This paper reports on the creation of an interface for 3D virtual environments, computer-aided design applications or computer games. Standard computer interfaces are bound to 2D surfaces, e.g., computer mouses, keyboards, touch pads or touch screens. The Smart Object is intended to provide the user with a 3D interface by using sensors that register movement (inertial measurement unit), touch (touch screen) and voice (microphone). The design and development process as well as the tests and results are presented in this paper. The Smart Object was developed by a team of four third-year engineering students from diverse scientific backgrounds and nationalities during one semester.
Resumo:
The present generation of eLearning platforms values the interchange of learning objects standards. Nevertheless, for specialized domains these standards are insufficient to fully describe all the assets, especially when they are used as input for other eLearning services. To address this issue we extended an existing learning objects standard to the particular requirements of a specialized domain, namely the automatic evaluation of programming problems. The focus of this paper is the definition of programming problems as learning objects. We introduce a new schema to represent metadata related to automatic evaluation that cannot be conveniently represented using existing standards, such as: the type of automatic evaluation; the requirements of the evaluation engine; or the roles of different assets - tests cases, program solutions, etc. This new schema is being used in an interoperable repository of learning objects, called crimsonHex.
Resumo:
Esta dissertação considera a importância da avaliação imobiliária no mercado imobiliário, nas mais diversas situações. Contudo, cinge-se à determinação de um presumível valor de transação para apartamentos, moradias, lojas e terrenos, para venda ou arrendamento. Os mercados imobiliários escolhidos são dois concelhos conhecidos, da autora, por ser mais fácil a perceção dos locais e preços de venda. Foi escolhido o Concelho de Valongo para apartamentos, moradias e terrenos e o Concelho da Maia para lojas. Para determinarmos os valores em estudo adotaram-se os métodos de avaliação imobiliária mais comuns nomeadamente: o Método Comparativo, Método do Rendimento e o Método do Custo. São apresentados os métodos de avaliação mais utilizados, descrevendo-se a aplicação de cada um deles e as suas condições necessárias. Fez-se uma comparação entre cada um o que permitiu concluir sobre os mesmos. A recolha dos imóveis objeto de estudo foi efetuada em Sites de empresas imobiliárias que dispunham de informação necessária ao âmbito do trabalho. Aplicaram-se os métodos a cada caso recolhido e posteriormente fez-se a comparação dos resultados obtidos. Através de tratamento estatístico, utilizaram-se as técnicas de regressão múltipla para análise de relações entre os métodos de avaliação aplicados. Por fim, retiraram-se conclusões sobre a relação existente entre os três métodos de avaliação.
Resumo:
The content of a Learning Object is frequently characterized by metadata from several standards, such as LOM, SCORM and QTI. Specialized domains require new application profiles that further complicate the task of editing the metadata of learning object since their data models are not supported by existing authoring tools. To cope with this problem we designed a metadata editor supporting multiple metadata languages, each with its own data model. It is assumed that the supported languages have an XML binding and we use RDF to create a common metadata representation, independent from the syntax of each metadata languages. The combined data model supported by the editor is defined as an ontology. Thus, the process of extending the editor to support a new metadata language is twofold: firstly, the conversion from the XML binding of the metadata language to RDF and vice-versa; secondly, the extension of the ontology to cover the new metadata model. In this paper we describe the general architecture of the editor, we explain how a typical metadata language for learning objects is represented as an ontology, and how this formalization captures all the data required to generate the graphical user interface of the editor.
Resumo:
Assessment plays a vital role in learning. This is certainly the case with assessment of computer programs, both in curricular and competitive learning. The lack of a standard – or at least a widely used format – creates a modern Ba- bel tower made of Learning Objects, of assessment items that cannot be shared among automatic assessment systems. These systems whose interoperability is hindered by the lack of a common format include contest management systems, evaluation engines, repositories of learning objects and authoring tools. A prag- matical approach to remedy this problem is to create a service to convert among existing formats. A kind of translation service specialized in programming prob- lems formats. To convert programming exercises on-the-fly among the most used formats is the purpose of the BabeLO – a service to cope with the existing Babel of Learning Object formats for programming exercises. BabeLO was designed as a service to act as a middleware in a network of systems typically used in auto- matic assessment of programs. It provides support for multiple exercise formats and can be used by: evaluation engines to assess exercises regardless of its format; repositories to import exercises from various sources; authoring systems to create exercises in multiple formats or based on exercises from other sources. This paper analyses several of existing formats to highlight both their differ- ences and their similar features. Based on this analysis it presents an approach to extensible format conversion. It presents also the features of PExIL, the pivotal format in which the conversion is based; and the function definitions of the proposed service – BabeLO. Details on the design and implementation of BabeLO, including the service API and the interfaces required to extend the conversion to a new format, are also provided. To evaluate the effectiveness and efficiency of this approach this paper reports on two actual uses of BabeLO: to relocate exercises to a different repository; and to use an evaluation engine in a network of heterogeneous systems.
Resumo:
The ecotoxicological response of the living organisms in an aquatic system depends on the physical, chemical and bacteriological variables, as well as the interactions between them. An important challenge to scientists is to understand the interaction and behaviour of factors involved in a multidimensional process such as the ecotoxicological response.With this aim, multiple linear regression (MLR) and principal component regression were applied to the ecotoxicity bioassay response of Chlorella vulgaris and Vibrio fischeri in water collected at seven sites of Leça river during five monitoring campaigns (February, May, June, August and September of 2006). The river water characterization included the analysis of 22 physicochemical and 3 microbiological parameters. The model that best fitted the data was MLR, which shows: (i) a negative correlation with dissolved organic carbon, zinc and manganese, and a positive one with turbidity and arsenic, regarding C. vulgaris toxic response; (ii) a negative correlation with conductivity and turbidity and a positive one with phosphorus, hardness, iron, mercury, arsenic and faecal coliforms, concerning V. fischeri toxic response. This integrated assessment may allow the evaluation of the effect of future pollution abatement measures over the water quality of Leça River.
Resumo:
The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.