38 resultados para Mathematics teaching-learning


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Currently, due to the widespread use of computers and the internet, students are trading libraries for the World Wide Web and laboratories with simulation programs. In most courses, simulators are made available to students and can be used to proof theoretical results or to test a developing hardware/product. Although this is an interesting solution: low cost, easy and fast way to perform some courses work, it has indeed major disadvantages. As everything is currently being done with/in a computer, the students are loosing the “feel” of the real values of the magnitudes. For instance in engineering studies, and mainly in the first years, students need to learn electronics, algorithmic, mathematics and physics. All of these areas can use numerical analysis software, simulation software or spreadsheets and in the majority of the cases data used is either simulated or random numbers, but real data could be used instead. For example, if a course uses numerical analysis software and needs a dataset, the students can learn to manipulate arrays. Also, when using the spreadsheets to build graphics, instead of using a random table, students could use a real dataset based, for instance, in the room temperature and its variation across the day. In this work we present a framework which uses a simple interface allowing it to be used by different courses where the computers are the teaching/learning process in order to give a more realistic feeling to students by using real data. A framework is proposed based on a set of low cost sensors for different physical magnitudes, e.g. temperature, light, wind speed, which are connected to a central server, that the students have access with an Ethernet protocol or are connected directly to the student computer/laptop. These sensors use the communication ports available such as: serial ports, parallel ports, Ethernet or Universal Serial Bus (USB). Since a central server is used, the students are encouraged to use sensor values results in their different courses and consequently in different types of software such as: numerical analysis tools, spreadsheets or simply inside any programming language when a dataset is needed. In order to do this, small pieces of hardware were developed containing at least one sensor using different types of computer communication. As long as the sensors are attached in a server connected to the internet, these tools can also be shared between different schools. This allows sensors that aren't available in a determined school to be used by getting the values from other places that are sharing them. Another remark is that students in the more advanced years and (theoretically) more know how, can use the courses that have some affinities with electronic development to build new sensor pieces and expand the framework further. The final solution provided is very interesting, low cost, simple to develop, allowing flexibility of resources by using the same materials in several courses bringing real world data into the students computer works.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Everyday accounting and management teachers face the challenge of creating learning environments that motivate students. This chapter describes the Business Simulation (BS) experience that has taken place at the Polytechnic Institute of Porto, Institute of Accounting and Administration (IPP/ISCAP). The chapter presents students’ perceptions about the course and the teaching/learning approach. The results show that pedagogical methods used (competency-oriented), generic competencies (cooperation and group work), and interpersonal skills (organisational and communication skills) are relevant for future accounting professionals. In addition, positive remarks and possible constraints based on observation, staff meetings, and past research are reported. The chapter concludes with some recommendations from the project implementation

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Massive Open Online Courses (MOOC) are gaining prominence in transversal teaching-learning strategies. However, there are many issues still debated, namely assessment, recognized largely as a cornerstone in Education. The large number of students involved requires a redefinition of strategies that often use approaches based on tasks or challenging projects. In these conditions and due to this approach, assessment is made through peer-reviewed assignments and quizzes online. The peer-reviewed assignments are often based upon sample answers or topics, which guide the student in the task of evaluating peers. This chapter analyzes the grading and evaluation in MOOCs, especially in science and engineering courses, within the context of education and grading methodologies and discusses possible perspectives to pursue grading quality in massive e-learning courses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Em acordo com o Dec. Lei nº 3/2008 de 7 de janeiro e para alunos com necessidades educativas especiais a medida currículo específico individual é considerada a mais restritiva de todas as medidas educativas. A área disciplinar da matemática, pela sua aplicabilidade no quotidiano, assume primordial importância no Programa Educativo Individual (PEI) destes alunos. Assim, o presente estudo visa analisar a área curricular de matemática dos PEI de alunos a frequentar o 2º e 3º ciclo de ensino básico ao abrigo da medida educativa currículo específico individual (CEI); visa igualmente constatar que seleção de conteúdos programáticos são percecionados como prioritários para a equipa que elabora o PEI. Em suma, o estudo visa compreender alguns aspetos que, de forma direta ou indireta, interagem com a elaboração do currículo. Tem, ainda, um caráter exploratório e está apoiado numa metodologia de natureza qualitativa e quantitativa (numa dimensão descritiva) que procede à análise documental de excertos (área curricular de matemática) dos Programas Educativos Individuais (PEI). Para o efeito foram analisados 50 PEI que identificaram regularidades relativas aos diferentes conteúdos e à extensão de cada conteúdo. Os resultados evidenciam uma escolha maioritária de conteúdos matemáticos associados ao programa do 1º ano do 1º ciclo do ensino básico e, simultaneamente, de descritores associados aos números e operações. Os resultados permitem extrapolar acerca da interação entre níveis de programação e de funcionalidade dos alunos em CEI e requerem mais estudos que sustentem aquelas evidências e clarifiquem variáveis que interagem na elaboração do currículo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An overwhelming problem in Math Curriculums in Higher Education Institutions (HEI), we are daily facing in the last decade, is the substantial differences in Math background of our students. When you try to transmit, engage and teach subjects/contents that your “audience” is unable to respond to and/or even understand what we are trying to convey, it is somehow frustrating. In this sense, the Math projects and other didactic strategies, developed through Learning Management System Moodle, which include an array of activities that combine higher order thinking skills with math subjects and technology, for students of HE, appear as remedial but important, proactive and innovative measures in order to face and try to overcome these considerable problems. In this paper we will present some of these strategies, developed in some organic units of the Polytechnic Institute of Porto (IPP). But, how “fruitful” are the endless number of hours teachers spent in developing and implementing these platforms? Do students react to them as we would expect? Do they embrace this opportunity to overcome their difficulties? How do they use/interact individually with LMS platforms? Can this environment that provides the teacher with many interesting tools to improve the teaching – learning process, encourages students to reinforce their abilities and knowledge? In what way do they use each available material – videos, interactive tasks, texts, among others? What is the best way to assess student’s performance in these online learning environments? Learning Analytics tools provides us a huge amount of data, but how can we extract “good” and helpful information from them? These and many other questions still remain unanswered but we look forward to get some help in, at least, “get some drafts” for them because we feel that this “learning analysis”, that tackles the path from the objectives to the actual results, is perhaps the only way we have to move forward in the “best” learning and teaching direction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Learning is not a spectator’s sport. Students do not learn much by just sitting in class listening their teachers, memorizing pre-packaged assignments and spitting out answers. The teaching-learning process has been a constant target of studies, particularly in Higher Education, in consequence of the annual increase of new students. The concern with maintaining a desired quality level in the training of these students, conjugated with the will to widen the access to all of those who finish Secondary School Education, has triggered a greater intervention from the education specialists, in partnership with the teachers of all Higher Education areas, in the analysis of this problem. Considering the particular case of Engineering, it has been witnessed a rising concern with the active learning strategies and forms of assessment. Research has demonstrated that students learn more if they are actively engaged with the material they are studying. In this presentation we describe, present and discuss the techniques and the results of Peer Instruction method in an introductory Calculus courses of an Engineering Bach

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this paper is presenting the recommendation module of the Mathematics Collaborative Learning Platform (PCMAT). PCMAT is an Adaptive Educational Hypermedia System (AEHS), with a constructivist approach, which presents contents and activities adapted to the characteristics and learning style of students of mathematics in basic schools. The recommendation module is responsible for choosing different learning resources for the platform, based on the user's characteristics and performance. Since the main purpose of an adaptive system is to provide the user with content and interface adaptation, the recommendation module is integral to PCMAT’s adaptation model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Devido à actual conjuntura sócio económica e às crescentes preocupações ambientais e sociais houve a necessidade de construir e desenvolver indicadores de sustentabilidade que registassem e avaliassem o desempenho, ano após ano, da comunidade escolar, de modo a melhorá-lo, pois as escolas devem ser elas próprias, modelos de sustentabilidade. Os indicadores formulados e desenvolvidos são ferramentas de gestão pois facultam a identificação de prioridades, o estabelecimento de metas e a tomada de decisões além de possibilitarem a elaboração de um historial que pode ajudar a melhorar o desempenho económico, ambiental e social das escolas, de acordo com os três pilares do desenvolvimento sustentável. Foram aplicados, ao caso de estudo, os indicadores considerados mais relevantes, tendo em conta a globalidade da sua aplicação, a sua clareza, mensurabilidade, compreensibilidade e reprodutibilidade. Obtiveram-se 185 indicadores de eficiência distribuídos pelas áreas ambiental (46), social (85), económica (18) e ensino / aprendizagem (36) e 63 indicadores descritivos distribuídos pelas áreas social (39), económica (9) e ensino / aprendizagem (15). Através de um inquérito realizado para avaliar as expectativas globais da comunidade escolar e dos dados disponibilizados pelo gabinete de qualidade e pela administração da escola, que serviu de caso de estudo, conseguiram-se calcular 71% dos indicadores de eficiência e 70% dos indicadores descritivos propostos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Technology plays a double role in Education: it can act as a facilitator in the teaching/learning process and it can be the very subject of that process in Science & Engineering courses. This is especially true when students perform laboratory activities where they interact with equipment and objects under experimentation. In this context, technology can also play a facilitator role if it allows students to perform experiments in a remote fashion, through the Internet, in a so-called weblab or remote laboratory. No doubt, the Internet has been revolutionizing the educational process in many aspects, and it can be stated that remote laboratories are just an angle of that on-going revolution. As any other educational tool or resource, the i) pedagogical approach and the ii) technology used in the development of a remote laboratory can dictate its general success or its ephemeral existence. By pedagogical approach we consider the way remote experiments address the process by which students acquire experimental skills and link experimental results to theoretical concepts. In respect to technology, we discuss different specification and implementation alternatives, to show the case where the adoption of a family of standards would positively contribute to a larger acceptance and utilization of remote laboratories, and also to a wider collaboration in their development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aiming for teaching/learning support in sciences and engineering areas, the Remote Experimentation concept (an E-learning subset) has grown in last years with the development of several infrastructures that enable doing practical experiments from anywhere and anytime, using a simple PC connected to the Internet. Nevertheless, given its valuable contribution to the teaching/learning process, the development of more infrastructures should continue, in order to make available more solutions able to improve courseware contents and motivate students for learning. The work presented in this paper contributes for that purpose, in the specific area of industrial automation. After a brief introduction to the Remote Experimentation concept, we describe a remote accessible lab infrastructure that enables users to conduct real experiments with an important and widely used transducer in industrial automation, named Linear Variable Differential Transformer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The teaching-learning process is increasingly focused on the combination of the paradigms “learning by viewing” and “learning by doing.” In this context, educational resources, either expository or evaluative, play a pivotal role. Both types of resources are interdependent and their sequencing would create a richer educational experience to the end user. However, there is a lack of tools that support sequencing essentially due to the fact that existing specifications are complex. The Seqins is a sequencing tool of digital resources that has a fairly simple sequencing model. The tool communicates through the IMS LTI specification with a plethora of e-learning systems such as learning management systems, repositories, authoring and evaluation systems. In order to validate Seqins we integrate it in an e-learning Ensemble framework instance for the computer programming learning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

TICEduca. III Congresso Internacional TIC e Educação. 14 a 16 Novembro, Lisboa

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A utilização de aplicações Web 2.0 no processo ensino/aprendizagem tem vindo a intensificar-se nos últimos tempos, mais por iniciativas individuais de docentes e estudantes do que por estratégia das Instituições de Ensino. Este artigo apresenta um projecto já em curso que consiste na implementação de uma plataforma de criação de ambientes de aprendizagem controlados pelos estudantes, integrando aplicações Web 2.0 e sistemas de gestão de conteúdos. A plataforma permitirá a utilização segura de conteúdos criados em aplicações Web 2.0, no processo de avaliação, possibilitando a sua publicação na infra-estrutura controlada pela Instituição de Ensino Superior, contribuindo assim para a adequação do binómio ensino/aprendizagem ao novo paradigma implicado no processo de Bolonha.