53 resultados para Compressive loading
Resumo:
A indústria automóvel é um dos setores mais exigentes do mercado global, por este motivo empresas como a Continental Mabor S.A, líderes de mercado, necessitam estar na linha da frente no que toca a programas de melhoria contínua e de uma gestão orientada para um crescimento rentável e sustentado. Nesta perspetiva, este estudo de dissertação tem como objetivo encontrar uma solução para a gestão de stock e FiFo (First in First out) de pneus em verde na supracitada empresa, situada em Lousado, Vila Nova de Famalicão. Este projeto de dissertação iniciou-se com uma análise e diagnóstico do processo produtivo do pneu, entre a Construção e a Vulcanização. Nesta análise, foi possível identificar vários problemas, sendo o mais crítico associado à logística interna de transporte do pneu “em curso”, de fabrico entre as fases do mesmo, Construção e Vulcanização. Devido a condicionantes estruturais e de organização, a logística interna de transporte entre estes dois sectores enfrenta estrangulamentos nos fluxos, a falta de espaço para acomodar o material em curso, problemas organizacionais de controlo e monitorização do processo produtivo, dificuldades de regulação do fluxo e localização dos carros de transporte dos pneus em verde. Face aos problemas detetados ao longo do estudo, foram analisadas várias soluções para a resolução ou minimização dos mesmos. Entre as soluções propostas salientam-se: o alargamento do sistema de transporte por tapetes rolantes GTC (Green Tire Conveying) a todos os módulos de construção. Esta solução diminui o fluxo de carros para a área da construção, descongestionando a zona próxima do sistema de carregamento automático GTAL (Green Tire Automatic Loading) na vulcanização. A implementação dum sistema Wi-Fi RFID, que permite identificar e localizar artigos em curso utilizando etiquetas inteligentes numa rede wireless, conseguindo melhorar a programação de produção e o respetivo sequenciamento. Sabendo também que a Continental se encontra numa fase de expansão, designada Projeto Route 17/20, as soluções propostas tomaram em consideração essa nova realidade futura. Assim, foram estudados e propostos novos layouts para esse atual processo. Nestes novos layouts, procurou-se uma reorganização dos processos de fabrico, bem como um redimensionamento dos espaços de parqueamento de carros de pneus verdes adequado aos volumes produtivos. De igual forma, adequou-se os espaços físicos à possível implementação de um sistema de FiFo de pneus em verde na planta fabril, quando concluída a expansão. Este trabalho de dissertação apresenta como vantagens diretas da sua implementação: gerar a menor perturbação no atual método de trabalho seguido na empresa; previsivelmente aumentar a eficiência do processo produtivo; potenciar o crescimento tecnológico programado pela empresa; e oferecer uma boa relação custo/benefício no investimento necessário. Como apreciação final, pode-se concluir que este estudo foi finalizado com sucesso, visto que as soluções propostas foram apreciadas positivamente pela Administração da Continental Mabor S.A. e estão correntemente a ser avaliadas pelo grupo.
Resumo:
A expansão da área ocupada pelo Porto de Leixões (Matosinhos e Leça da Palmeira), sobre solos muito compressíveis, de origem fluvial e marinha, leva a que seja necessário recorrer à engenharia para encontrar soluções adequadas à utilização de obras dos fins em vista. Assim, na zona do porto são muitos os projectos de engenharia civil/geotécnica executados nestes solos. Como exemplo, podem citar-se a Consolidação do Terrapleno e Construção dos Caminhos de Rolamento do Terminal de Contentores TC4S, a Reabilitação de um troço com 110m, do Cais Sul e do Cais Nascente da Doca nº 4 e a Construção da Portaria Principal do Porto de Leixões, todos no vale fóssil do rio Leça. São vastos os métodos a usar para o melhoramento destes solos, a colocação de colunas de brita, com o objectivo de reforçar o solo, aumentando a sua capacidade de carga e funcionando como drenos verticais, para solucionar o problema das deformações excessivas durante e após o final da obra, uma alternativa consiste em induzir a aceleração da consolidação da camada de solo mole, o uso de pré-carregamento e drenos verticais são usuais. Quando o tempo de concretização da obra exige que o aterro seja utilizado de imediato, uma solução viável é a colocação de estacas, que transferem o peso do aterro, ou parte dele, para camadas mais competentes. Também se pode proceder à retirada do solo original e substituí-lo por outro de qualidade superior. A mais recente técnica de melhoria de solos por injecção - jet grouting - é utilizada em diversas situações, incluindo obras provisórias e definitivas. O presente trabalho visa descrever, em função dos diversos factores, o comportamento do solo face aos vários métodos utilizados e os objectivos pretendidos que serão abordados no enquadramento empírico do trabalho.
Resumo:
Este trabalho pretende avaliar e melhorar o modo de execução da aplicação da técnica de rebentamento com explosivos, aumentando a fragmentação e reduzindo o custo no conjunto das operações de perfuração, carga, detonação e fragmentação secundária e compreender a influência na variação do custo das operações face às melhorias adoptadas. A investigação foi executada na pedreira da Mota-Engil, Engenharia S.A. ‘’ Bouça do Menino’’ Vila Verde, Cervães, tendo os dados iniciais sido recolhidos em 2004 (ano de referência) e comparados com os seguintes 4 anos. A perfuração é geralmente um dos principais factores que influenciam o resultado de um rebentamento, já que do seu rigor pode depender a eficiência do explosivo. Hoje em dia, para além da adequação dos métodos de execução ao local a fragmentar, existem ferramentas que nos permitem visualizar com rigor as circunstâncias em que se desenvolvem os trabalhos, nomeadamente as utilizadas pelos equipamentos de perfuração para controlo de profundidade, inclinação e direcção, a utilização de feixes ‘’laser’’ que nos permitem manter o nivelamento das plataformas, o ‘’laser’’ profile que nos ajuda a definir o posicionamento e inclinação dos furos relativamente à frente livre antes de executar a perfuração, ou ainda, a utilização de equipamentos de registo de coordenadas que nos permitem verificar o posicionamento do furo após a sua execução e decidir sobre a sua utilização mais correcta em função da sua posição. A utilização destas ferramentas associadas a um ‘’software’’ de desenho é ainda uma excelente ferramenta de formação para os operadores da perfuração e utilização dos explosivos, já que permite visualizar e compreender a relação da posição dos furos com o resultado do rebentamento.
Resumo:
Mestrado em Engenharia Geotécnica e Geoambiente
Resumo:
Epigallocatechin gallate (EGCG), an antioxidant with several pharmacological and biological activities, was encapsulated in carbohydrate particles to preserve its antioxidant properties and improve its bioavailability. Gum arabic–maltodextrin particles loaded with EGCG (EGCG/P) were successfully produced by homogenization and spray-drying, with an EGCG loading efficiency of 96 ± 3%. Spray-dried particles are spherical or corrugated and polydisperse with diameters less than 20 m. The particles in aqueous suspension revealed two main populations, with mean average diameters of 40 nm and 400 nm. Attenuated total reflection-infrared spectroscopy (ATR-IR) confirmed that EGCG was incorporated in the carbohydrate matrix by intermolecular interactions, maintaining its chemical integrity. Atomic force microscopy imaging proved the particle spherical shape and size. The present study demonstrates that the carbohydrate matrix is able to preserve EGCG antioxidant properties, as proof of concept to be used as polymeric drug carrier.
Resumo:
Objective: To analyze the relation between contralesional and ipsilesional limbs in subjects with stroke during step-to-step transition of walking. Design: Observational, transversal, analytical study with a convenience sample. Setting: Physical medicine and rehabilitation clinic. Participants: Subjects (nZ16) with poststroke hemiparesis with the ability to walk independently and healthy controls (nZ22). Interventions: Not applicable. Main Outcome Measures: Bilateral lower limbs electromyographic activity of the soleus (SOL), gastrocnemius medialis, tibialis anterior, biceps femoris, rectus femoris, and vastus medialis (VM) muscles and the ground reaction force were analyzed during double-support and terminal stance phases of gait. Results: The propulsive impulse of the contralesional trailing limb was negatively correlated with the braking impulse of the leading limb during double support (rZ .639, PZ.01). A moderate functional relation was observed between thigh muscles (rZ .529, PZ.035), and a strong and moderate dysfunctional relation was found between the plantar flexors of the ipsilesional limb and the vastus medialis of the contralesional limb, respectively (SOL-VM, rZ .80, P<.001; gastrocnemius medialis-VM, rZ .655, PZ.002). Also, a functional moderate negative correlation was found between the SOL and rectus femoris muscles of the ipsilesional limb during terminal stance and between the SOL (rZ .506, PZ.046) and VM (rZ .518, PZ.04) muscles of the contralesional limb during loading response, respectively. The trailing limb relative impulse contribution of the contralesional limb was lower than the ipsilesional limb of subjects with stroke (PZ.02) and lower than the relative impulse contribution of the healthy limb (PZ.008) during double support. Conclusions: The findings obtained suggest that the lower performance of the contralesional limb in forward propulsion during gait is related not only to contralateral supraspinal damage but also to a dysfunctional influence of the ipsilesional limb.
Resumo:
Ibuprofen is amongst the most worldwide consumed pharmaceuticals. The present work presents the first data in the occurrence of ibuprofen in Portuguese surface waters, focusing in the north area of the country, which is one of the most densely populated areas of Portugal. Analysis of ibuprofen is based on pre-concentration of the analyte with solid phase extraction and subsequent determination with liquid chromatography coupled to fluorescence detection. A total of 42 water samples, including surface waters, landfill leachates,Wastewater Treatment Plant (WWTP), and hospital effluents, were analyzed in order to evaluate the occurrence of ibuprofen in the north of Portugal. In general, the highest concentrations were found in the river mouths and in the estuarine zone. The maximum concentrations found were 48,720 ngL−1 in the landfill leachate, 3,868 ngL−1 in hospital effluent, 616 ngL−1 in WWTP effluent, and 723 ngL−1 in surface waters (Lima river). Environmental risk assessment was evaluated and at the measured concentrations only landfill leachates reveal potential ecotoxicological risk for aquatic organisms. Owing to a high consumption rate of ibuprofen among Portuguese population, as prescribed and nonprescribed medicine, the importance of hospitals, WWTPs, and landfills as sources of entrance of pharmaceuticals in the environment was pointed out. Landfill leachates showed the highest contribution for ibuprofen mass loading into surface waters. On the basis of our findings, more studies are needed as an attempt to assess more vulnerable areas.
Resumo:
Component joining is typically performed by welding, fastening, or adhesive-bonding. For bonded aerospace applications, adhesives must withstand high-temperatures (200°C or above, depending on the application), which implies their mechanical characterization under identical conditions. The extended finite element method (XFEM) is an enhancement of the finite element method (FEM) that can be used for the strength prediction of bonded structures. This work proposes and validates damage laws for a thin layer of an epoxy adhesive at room temperature (RT), 100, 150, and 200°C using the XFEM. The fracture toughness (G Ic ) and maximum load ( ); in pure tensile loading were defined by testing double-cantilever beam (DCB) and bulk tensile specimens, respectively, which permitted building the damage laws for each temperature. The bulk test results revealed that decreased gradually with the temperature. On the other hand, the value of G Ic of the adhesive, extracted from the DCB data, was shown to be relatively insensitive to temperature up to the glass transition temperature (T g ), while above T g (at 200°C) a great reduction took place. The output of the DCB numerical simulations for the various temperatures showed a good agreement with the experimental results, which validated the obtained data for strength prediction of bonded joints in tension. By the obtained results, the XFEM proved to be an alternative for the accurate strength prediction of bonded structures.
Resumo:
In this study, efforts were made in order to put forward an integrated recycling approach for the thermoset based glass fibre reinforced polymer (GPRP) rejects derived from the pultrusion manufacturing industry. Both the recycling process and the development of a new cost-effective end-use application for the recyclates were considered. For this purpose, i) among the several available recycling techniques for thermoset based composite materials, the most suitable one for the envisaged application was selected (mechanical recycling); and ii) an experimental work was carried out in order to assess the added-value of the obtained recyclates as aggregates and reinforcement replacements into concrete-polymer composite materials. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified concrete-polymer composites with regard to unmodified materials. In the mix design process of the new GFRP waste based composite material, the recyclate content and size grade, and the effect of the incorporation of an adhesion promoter were considered as material factors and systematically tested between reasonable ranges. The optimization process of the modified formulations was supported by the Fuzzy Boolean Nets methodology, which allowed finding the best balance between material parameters that maximizes both flexural and compressive strengths of final composite. Comparing to related end-use applications of GFRP wastes in cementitious based concrete materials, the proposed solution overcome some of the problems found, namely the possible incompatibilities arisen from alkalis-silica reaction and the decrease in the mechanical properties due to high water-cement ratio required to achieve the desirable workability. Obtained results were very promising towards a global cost-effective waste management solution for GFRP industrial wastes and end-of-life products that will lead to a more sustainable composite materials industry.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.
Resumo:
In this paper the adequacy and the benefit of incorporating glass fibre reinforced polymer (GFRP) waste materials into polyester based mortars, as sand aggregates and filler replacements, are assessed. Different weight contents of mechanically recycled GFRP wastes with two particle size grades are included in the formulation of new materials. In all formulations, a polyester resin matrix was modified with a silane coupling agent in order to improve binder-aggregates interfaces. The added value of the recycling solution was assessed by means of both flexural and compressive strengths of GFRP admixed mortars with regard to those of the unmodified polymer mortars. Planning of experiments and data treatment were performed by means of full factorial design and through appropriate statistical tools based on analyses of variance (ANOVA). Results show that the partial replacement of sand aggregates by either type of GFRP recyclates improves the mechanical performance of resultant polymer mortars. In the case of trial formulations modified with the coarser waste mix, the best results are achieved with 8% waste weight content, while for fine waste based polymer mortars, 4% in weight of waste content leads to the higher increases on mechanical strengths. This study clearly identifies a promising waste management solution for GFRP waste materials by developing a cost-effective end-use application for the recyclates, thus contributing to a more sustainable fibre-reinforced polymer composites industry.
Resumo:
The development of scaffolds that combine the delivery of drugs with the physical support provided by electrospun fibres holds great potential in the field of nerve regeneration. Here it is proposed the incorporation of ibuprofen, a well-known non-steroidal anti-inflammatory drug, in electrospun fibres of the statistical copolymer poly(trimethylene carbonate-co-ε-caprolactone) [P(TMC-CL)] to serve as a drug delivery system to enhance axonal regeneration in the context of a spinal cord lesion, by limiting the inflammatory response. P(TMC-CL) fibres were electrospun from mixtures of dichloromethane (DCM) and dimethylformamide (DMF). The solvent mixture applied influenced fibre morphology, as well as mean fibre diameter, which decreased as the DMF content in solution increased. Ibuprofen-loaded fibres were prepared from P(TMC-CL) solutions containing 5% ibuprofen (w/w of polymer). Increasing drug content to 10% led to jet instability, resulting in the formation of a less homogeneous fibrous mesh. Under the optimized conditions, drug-loading efficiency was above 80%. Confocal Raman mapping showed no preferential distribution of ibuprofen in P(TMC-CL) fibres. Under physiological conditions ibuprofen was released in 24h. The release process being diffusion-dependent for fibres prepared from DCM solutions, in contrast to fibres prepared from DCM-DMF mixtures where burst release occurred. The biological activity of the drug released was demonstrated using human-derived macrophages. The release of prostaglandin E2 to the cell culture medium was reduced when cells were incubated with ibuprofen-loaded P(TMC-CL) fibres, confirming the biological significance of the drug delivery strategy presented. Overall, this study constitutes an important contribution to the design of a P(TMC-CL)-based nerve conduit with anti-inflammatory properties.
Resumo:
In this work, an experimental study was performed on the influence of plug-filling, loading rate and temperature on the tensile strength of single-strap (SS) and double-strap (DS) repairs on aluminium structures. Whilst the main purpose of this work was to evaluate the feasibility of plug-filling for the strength improvement of these repairs, a parallel study was carried out to assess the sensitivity of the adhesive to external features that can affect the repairs performance, such as the rate of loading and environmental temperature. The experimental programme included repairs with different values of overlap length (L O = 10, 20 and 30 mm), and with and without plug-filling, whose results were interpreted in light of experimental evidence of the fracture modes and typical stress distributions for bonded repairs. The influence of the testing speed on the repairs strength was also addressed (considering 0.5, 5 and 25 mm/min). Accounting for the temperature effects, tests were carried out at room temperature (≈23°C), 50 and 80°C. This permitted a comparative evaluation of the adhesive tested below and above the glass transition temperature (T g), established by the manufacturer as 67°C. The combined influence of these two parameters on the repairs strength was also analysed. According to the results obtained from this work, design guidelines for repairing aluminium structures were
Resumo:
The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag–26.5Cu–3Ti and Ag–34.5Cu–1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 °C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Ag–26.5Cu–3Ti brazing alloy and a brazing temperature of 850 °C, produces the best results in terms of bond strength, 234 ± 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag–34.5Cu–1.5Ti brazing alloy and a brazing temperature of 850 °C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 ± 0.21 μA cm−2. Nevertheless, the joints produced at 850 °C using a Ag–26.5Cu–3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 ± 18 MPa and 1.26 ± 0.58 μA cm−2, respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to play the most relevant role in the metal/ceramic joints electrochemical performance.
Resumo:
This work reports on an experimental and finite element method (FEM) parametric study of adhesively-bonded single and double-strap repairs on carbon-epoxy structures under buckling unrestrained compression. The influence of the overlap length and patch thickness was evaluated. This loading gains a particular significance from the additional characteristic mechanisms of structures under compression, such as fibres microbuckling, for buckling restrained structures, or global buckling of the assembly, if no transverse restriction exists. The FEM analysis is based on the use of cohesive elements including mixed-mode criteria to simulate a cohesive fracture of the adhesive layer. Trapezoidal laws in pure modes I and II were used to account for the ductility of most structural adhesives. These laws were estimated for the adhesive used from double cantilever beam (DCB) and end-notched flexure (ENF) tests, respectively, using an inverse technique. The pure mode III cohesive law was equalled to the pure mode II one. Compression failure in the laminates was predicted using a stress-based criterion. The accurate FEM predictions open a good prospect for the reduction of the extensive experimentation in the design of carbon-epoxy repairs. Design principles were also established for these repairs under buckling.